
Lauren Milechin

October 2020

MPI.jl

Slide - 2

• MPI is a message-passing library interface standard
– Specification, not an implementation
– Library, not a language
– Message-passing programming model (distributed memory model)

• Free, portable implementations available (e.g. MPICH, OpenMPI)

• MPI introduced in 1993 at SC Conference (SC’93)
– Implementations < 1 year later

• Vendors now provide optimized implementations (e.g. Intel: IMPI, Microsoft:
MS-MPI, IBM, …)

• MPI.jl is a Julia wrapper for a C MPI implementations
– Works with OpenMPI, MPICH, Intel MPI, Microsoft MPI, …

What is MPI?
Message Passing Interface

MPI.jl

Slide - 3

MPI.jl

Slide - 4

MPI.jl

Slide - 5

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

“Normalized” Word Count

count

books counts

File
System

read
merge

overall
counts

norm

normalized
counts

Slide - 6

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

• Where is the independence?
• What are the data access patterns?
– Where is the data and where does it need to go?

“Normalized” Word Count

count

books counts

File
System

read
merge

overall
counts

norm

normalized
counts

Slide - 7

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

• Where is the independence?
• What are the data access patterns?
– Where is the data and where does it need to go?

“Normalized” Word Count

count

books counts

File
System

read
merge

overall
counts

norm

normalized
counts

Slide - 8

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

• What are the data access patterns?
– Where is the data and where does it need to go?

“Normalized” Word Count

Process 2

Process 0
countd

1
c
1

countd
3

c
3

File
System

Process 1
countd

2
c
2

read

read

read

c
3 merge c norm

c

c

c
1

c
2

c
3

norm

norm

n
1

n
2

n
3

File
System

write

write

write

Slide - 9

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

• What are the data access patterns?
– Where is the data and where does it need to go?

“Normalized” Word Count

Process 2

Process 0
countd

1
c
1

countd
3

c
3

File
System

Process 1
countd

2
c
2

read

read

read

c
3

c norm

c

c

c
1

c
2

c
3

norm

norm

n
1

n
2

n
3

File
System

write

write

write

All send to P0 P0 send to P1, P2

merge

Slide - 10

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

“Normalized” Word Count

Process 2

Process 0
countd

1
c
1

countd
3

c
3

File
System

Process 1
countd

2
c
2

read

read

read

c
3 merge c norm

File
System

write
c
3

n
3

send to P0

Slide - 11

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

“Normalized” Word Count

Process 3

Process 1
countd

1
c
1

countd
3

c
3

File
System

Process 2
countd

2
c
2

read

read

read

c
3 sum c norm

c
3

c
3

send all

sum c

sum c

c
1

c
2

c
3

norm

norm

n
1

n
2

n
3

File
System

write

write

write

Slide - 12

“Normalized” Word Count

Process 3

Process 1

Process 2

Process 2

Process 0

Process 1

Process 2

Process 0

Process 1

Slide - 13

overallcounts = merge(+,counts…)

“Normalized” Word Count Serial

books

counts

File
System

read

overall
counts

normalized
counts

count

merge

norm

counts = countwords.(fnames)

for count in counts
normcount = merge(/,count,overallcounts)
print top 5

end

Slide - 14

“Normalized” Word Count- MPI

books

counts

File
System

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

mycounts = countwords.(fnames)

for count in mycounts
normcount = merge(/,mycount,overallcounts)
print top 5

end

overallcounts = merge(+,allcounts…)

P0 P1 P2 P3

merge merge merge merge

Slide - 15

“Normalized” Word Count- MPI

books

counts

File
System

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm for count in mycounts
normcount = merge(/,mycount,overallcounts)
print top 5

end

overallcounts = merge(+,allcounts…)

P0 P1 P2 P3

merge merge merge merge

myfnames = distributefiles(fnames)

mycounts = countwords.(myfnames)

Slide - 16

“Normalized” Word Count- MPI

books

counts

File
System

read

overall
counts

normalized
counts

count

merge

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

all
counts

for count in mycounts
normcount = merge(/,mycount,overallcounts)
print top 5

end

P0: overallcounts = merge(+,allcounts…)

P0 P1 P2 P3

myfnames = distributefiles(fnames)

mycounts = countwords.(myfnames)

Slide - 17

“Normalized” Word Count- MPI

books

counts

File
System

read

overall
counts

normalized
counts

count

merge

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

all
counts

for count in mycounts
normcount = merge(/,mycount,overallcounts)
print top 5

end

P1,P2,P3: Send to P0
P0: Receive from P1,P2,P3

P0: overallcounts = merge(+,allcounts…)

P0 P1 P2 P3

myfnames = distributefiles(fnames)

mycounts = countwords.(myfnames)

Slide - 18

“Normalized” Word Count- MPI

books

counts

File
System

read

overall
counts

normalized
counts

count

merge

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

books

counts

read

overall
counts

normalized
counts

count

norm

all
counts

for count in mycounts
normcount = merge(/,mycount,overallcounts)
print top 5

end

P1,P2,P3: Send to P0
P0: Receive from P1,P2,P3

P0: overallcounts = merge(+,allcounts…)

P0: Send to P1,P2,P3
P1,P2,P3: Receive from P0

P0 P1 P2 P3

myfnames = distributefiles(fnames)

mycounts = countwords.(myfnames)

Slide - 19

• MPI: Message Passing Interface

• MPI.init(): Initializes the MPI environment

• MPI.COMM_WORLD: the MPI communicator-

everything ranks need to communicate

• MPI.Comm_size: the number of MPI

processes (N)

• MPI.Comm_rank: an integer 0:N-1; each MPI

process has a different rank, you can think of

it as a process ID

MPI Terminology/Standard Commands

…

Slide - 20

• Send/Receive: Point-to-point communication: rank i sends a message to rank j and
rank j receives a message from rank i
– Blocking/Unblocking: Blocked send/receives wait until the message has been sent or

received before proceeding; unblocking send/receives and then continues

• Broadcast: one-to-all communication: rank i sends message to rank 0:i-1,i+1:N

• Gather: all-to-one communication: rank 0:i-1,i+1:N sends message to rank i

Some MPI Terminology/Standard Commands

i jmessage

0
3

2
1

message

0
3

2
1m1

m2
m3

Slide - 21

• Reduce: all-to-one communication: gather messages onto rank i and perform a reduce
operation

• Scatter: one-to-all send one piece to each

Some MPI Terminology/Standard Commands

0
3

2
1mes

sa
ge

0
3

2
1op(m1, m2, m3)

Slide - 22

• obj/buf: The ”message”, what you are sending
• dest: Where you are sending the message to
• tag: Unique identifier for this message
• comm: The MPI communicator

• src: The message source, who is sending the message
• tag: The matching unique identifier from the send
• comm: The MPI communicator

MPI.jl Basic Send and Recieve

See https://juliaparallel.github.io/MPI.jl/stable/pointtopoint/ for more functions and full descriptions

MPI.Send(buf, dest::Integer, tag::Integer, comm::Comm)
MPI.Send(obj::T, dest::Integer, tag::Integer, comm::Comm) where T
MPI.send(obj, dest::Integer, tag::Integer, comm::Comm)

MPI.Recv!(data, src::Integer, tag::Integer, comm::Comm)
MPI.Recv(::Type{T}, src::Integer, tag::Integer, comm::Comm)
MPI.recv(src::Integer, tag::Integer, comm::Comm)

https://juliaparallel.github.io/MPI.jl/stable/pointtopoint/

Slide - 23

• obj/buf: The ”message”, what you are sending
• dest: Where you are sending the message to
• tag: Unique identifier for this message
• comm: The MPI communicator

• src: The message source, who is sending the message
• tag: The matching unique identifier from the send
• comm: The MPI communicator

MPI.jl Basic Send and Recieve

See https://juliaparallel.github.io/MPI.jl/stable/pointtopoint/ for more functions and full descriptions

MPI.Send(buf, dest::Integer, tag::Integer, comm::Comm)
MPI.Send(obj::T, dest::Integer, tag::Integer, comm::Comm) where T
MPI.send(obj, dest::Integer, tag::Integer, comm::Comm)

MPI.Recv!(data, src::Integer, tag::Integer, comm::Comm)
MPI.Recv(::Type{T}, src::Integer, tag::Integer, comm::Comm)
MPI.recv(src::Integer, tag::Integer, comm::Comm)

https://juliaparallel.github.io/MPI.jl/stable/pointtopoint/

Slide - 24

Collective Communication Calls

0

3

2
1mes

sa

ge

Scatter

0
3

2
1

op(m1, m2, m3)

Reduce

0

3

2

1m1
m2
m3

Gather

0

3

2

1
message

Broadcast

Slide - 25

• On the Login Node, load the MPI and
Julia modules

• Tell MPI.jl to use the system MPI

• Start Julia and add/build the MPI.jl
package (press] to get to pkg mode)

MPI.jl On Supercloud

module load mpi
module load julia

export JULIA_MPI_BINARY=system

