
Lauren Milechin

October 2020

MPI.jl



Slide - 2

• MPI is a message-passing library interface standard
– Specification, not an implementation
– Library, not a language
– Message-passing programming model (distributed memory model)

• Free, portable implementations available (e.g. MPICH, OpenMPI)

• MPI introduced in 1993 at SC Conference (SC’93)
– Implementations < 1 year later

• Vendors now provide optimized implementations (e.g. Intel: IMPI, Microsoft: 
MS-MPI, IBM, …)

• MPI.jl is a Julia wrapper for a C MPI implementations
– Works with OpenMPI, MPICH, Intel MPI, Microsoft MPI, …

What is MPI?
Message Passing Interface

MPI.jl
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MPI.jl
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• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

“Normalized” Word Count

count

books counts

File 
System

read
merge

overall
counts

norm

normalized
counts



Slide - 6

• Several files of documents
• Want a summary of what they contain
– What are the normalized word counts for each document?

• Where is the independence?
• What are the data access patterns?
– Where is the data and where does it need to go?
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“Normalized” Word Count

Process 3

Process 1

Process 2

Process 2

Process 0

Process 1

Process 2

Process 0

Process 1



Slide - 13

overallcounts = merge(+,counts…)

“Normalized” Word Count Serial

books

counts

File 
System

read

overall
counts

normalized
counts

count

merge

norm

counts = countwords.(fnames)

for count in counts
normcount = merge(/,count,overallcounts)
# print top 5

end



Slide - 14

“Normalized” Word Count- MPI
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• MPI: Message Passing Interface

• MPI.init(): Initializes the MPI environment

• MPI.COMM_WORLD: the MPI communicator-

everything ranks need to communicate

• MPI.Comm_size: the number of MPI 

processes (N)

• MPI.Comm_rank: an integer 0:N-1; each MPI 

process has a different rank, you can think of 

it as a process ID

MPI Terminology/Standard Commands

…
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• Send/Receive: Point-to-point communication: rank i sends a message to rank j and 
rank j receives a message from rank i
– Blocking/Unblocking: Blocked send/receives wait until the message has been sent or 

received before proceeding; unblocking send/receives and then continues

• Broadcast: one-to-all communication: rank i sends message to rank 0:i-1,i+1:N

• Gather: all-to-one communication: rank 0:i-1,i+1:N sends message to rank i

Some MPI Terminology/Standard Commands
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• Reduce: all-to-one communication: gather messages onto rank i and perform a reduce 
operation

• Scatter: one-to-all send one piece to each

Some MPI Terminology/Standard Commands
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• obj/buf: The ”message”, what you are sending
• dest: Where you are sending the message to
• tag: Unique identifier for this message
• comm: The MPI communicator

• src: The message source, who is sending the message
• tag: The matching unique identifier from the send
• comm: The MPI communicator

MPI.jl Basic Send and Recieve

See https://juliaparallel.github.io/MPI.jl/stable/pointtopoint/ for more functions and full descriptions

MPI.Send(buf, dest::Integer, tag::Integer, comm::Comm)
MPI.Send(obj::T, dest::Integer, tag::Integer, comm::Comm) where T
MPI.send(obj, dest::Integer, tag::Integer, comm::Comm)

MPI.Recv!(data, src::Integer, tag::Integer, comm::Comm)
MPI.Recv(::Type{T}, src::Integer, tag::Integer, comm::Comm)
MPI.recv(src::Integer, tag::Integer, comm::Comm)

https://juliaparallel.github.io/MPI.jl/stable/pointtopoint/
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https://juliaparallel.github.io/MPI.jl/stable/pointtopoint/


Slide - 24

Collective Communication Calls
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• On the Login Node, load the MPI and 
Julia modules

• Tell MPI.jl to use the system MPI

• Start Julia and add/build the MPI.jl
package (press ] to get to pkg mode)

MPI.jl On Supercloud

module load mpi
module load julia

export JULIA_MPI_BINARY=system


