When something needs to be pulled directly from main memory this is known as a cache miss. To understand the cost of a cache miss vs standard calculations, take a look at this classic chart.
(Cache-aware and cache-oblivious algorithms are methods which change their indexing structure to optimize their use of the cache lines. We will return to this when talking about performance of linear algebra.)
Many algorithms in numerical linear algebra are designed to minimize cache misses. Because of this chain, many modern CPUs try to guess what you will want next in your cache. When dealing with arrays, it will speculate ahead and grab what is known as a cache line: the next chunk in the array. Thus, your algorithms will be faster if you iterate along the values that it is grabbing.
The values that it grabs are the next values in the contiguous order of the stored array. There are two common conventions: row major and column major. Row major means that the linear array of memory is formed by stacking the rows one after another, while column major puts the column vectors one after another.
Julia, MATLAB, and Fortran are column major. Python's numpy is row-major.
A = rand(100,100) B = rand(100,100) C = rand(100,100) using BenchmarkTools function inner_rows!(C,A,B) for i in 1:100, j in 1:100 C[i,j] = A[i,j] + B[i,j] end end @btime inner_rows!(C,A,B)
9.227 μs (0 allocations: 0 bytes)
function inner_cols!(C,A,B) for j in 1:100, i in 1:100 C[i,j] = A[i,j] + B[i,j] end end @btime inner_cols!(C,A,B)
3.205 μs (0 allocations: 0 bytes)
Locally, the stack is composed of a stack and a heap. The stack requires a static allocation: it is ordered. Because it's ordered, it is very clear where things are in the stack, and therefore accesses are very quick (think instantaneous). However, because this is static, it requires that the size of the variables is known at compile time (to determine all of the variable locations). Since that is not possible with all variables, there exists the heap. The heap is essentially a stack of pointers to objects in memory. When heap variables are needed, their values are pulled up the cache chain and accessed.
Heap allocations are costly because they involve this pointer indirection, so stack allocation should be done when sensible (it's not helpful for really large arrays, but for small values like scalars it's essential!)
function inner_alloc!(C,A,B) for j in 1:100, i in 1:100 val = [A[i,j] + B[i,j]] C[i,j] = val[1] end end @btime inner_alloc!(C,A,B)
113.932 μs (10000 allocations: 312.50 KiB)
function inner_noalloc!(C,A,B) for j in 1:100, i in 1:100 val = A[i,j] + B[i,j] C[i,j] = val[1] end end @btime inner_noalloc!(C,A,B)
3.150 μs (0 allocations: 0 bytes)
Why does the array here get heap-allocated? It isn't able to prove/guarantee at compile-time that the array's size will always be a given value, and thus it allocates it to the heap. @btime
tells us this allocation occurred and shows us the total heap memory that was taken. Meanwhile, the size of a Float64 number is known at compile-time (64-bits), and so this is stored onto the stack and given a specific location that the compiler will be able to directly address.
Note that one can use the StaticArrays.jl library to get statically-sized arrays and thus arrays which are stack-allocated:
using StaticArrays function static_inner_alloc!(C,A,B) for j in 1:100, i in 1:100 val = @SVector [A[i,j] + B[i,j]] C[i,j] = val[1] end end @btime static_inner_alloc!(C,A,B)
3.205 μs (0 allocations: 0 bytes)
Many times you do need to write into an array, so how can you write into an array without performing a heap allocation? The answer is mutation. Mutation is changing the values of an already existing array. In that case, no free memory has to be found to put the array (and no memory has to be freed by the garbage collector).
In Julia, functions which mutate the first value are conventionally noted by a !
. See the difference between these two equivalent functions:
function inner_noalloc!(C,A,B) for j in 1:100, i in 1:100 val = A[i,j] + B[i,j] C[i,j] = val[1] end end @btime inner_noalloc!(C,A,B)
3.207 μs (0 allocations: 0 bytes)
function inner_alloc(A,B) C = similar(A) for j in 1:100, i in 1:100 val = A[i,j] + B[i,j] C[i,j] = val[1] end end @btime inner_alloc(A,B)
3.421 μs (3 allocations: 78.20 KiB)
To use this algorithm effectively, the !
algorithm assumes that the caller already has allocated the output array to put as the output argument. If that is not true, then one would need to manually allocate. The goal of that interface is to give the caller control over the allocations to allow them to manually reduce the total number of heap allocations and thus increase the speed.
Wouldn't it be nice to not have to write the loop there? In many high level languages this is simply called vectorization. In Julia, we will call it array vectorization to distinguish it from the SIMD vectorization which is common in lower level languages like C, Fortran, and Julia.
In Julia, if you use .
on an operator it will transform it to the broadcasted form. Broadcast is lazy: it will build up an entire .
'd expression and then call broadcast!
on composed expression. This is customizable and documented in detail. However, to a first approximation we can think of the broadcast mechanism as a mechanism for building fused expressions. For example, the Julia code:
A .+ B .+ C;
under the hood lowers to something like:
map((a,b,c)->a+b+c,A,B,C);
where map
is a function that just loops over the values element-wise.
Take a quick second to think about why loop fusion may be an optimization.
This about what would happen if you did not fuse the operations. We can write that out as:
tmp = A .+ B tmp .+ C;
Notice that if we did not fuse the expressions, we would need some place to put the result of A .+ B
, and that would have to be an array, which means it would cause a heap allocation. Thus broadcast fusion eliminates the temporary variable (colloquially called just a temporary).
function unfused(A,B,C) tmp = A .+ B tmp .+ C end @btime unfused(A,B,C);
6.003 μs (6 allocations: 156.41 KiB)
fused(A,B,C) = A .+ B .+ C @btime fused(A,B,C);
3.856 μs (3 allocations: 78.20 KiB)
Note that we can also fuse the output by using .=
. This is essentially the vectorized version of a !
function:
D = similar(A) fused!(D,A,B,C) = (D .= A .+ B .+ C) @btime fused!(D,A,B,C);
3.442 μs (0 allocations: 0 bytes)
Julia allows for broadcasting the call ()
operator as well. .()
will call the function element-wise on all arguments, so sin.(A)
will be the elementwise sine function. This will fuse Julia like the other operators.
In articles on MATLAB, Python, R, etc., this is where you will be told to vectorize your code. Notice from above that this isn't a performance difference between writing loops and using vectorized broadcasts. This is not abnormal! The reason why you are told to vectorize code in these other languages is because they have a high per-operation overhead (which will be discussed further down). This means that every call, like +
, is costly in these languages. To get around this issue and make the language usable, someone wrote and compiled the loop for the C/Fortran function that does the broadcasted form (see numpy's Github repo). Thus A .+ B
's MATLAB/Python/R equivalents are calling a single C function to generally avoid the cost of function calls and thus are faster.
But this is not an intrinsic property of vectorization. Vectorization isn't "fast" in these languages, it's just close to the correct speed. The reason vectorization is recommended is because looping is slow in these languages. Because looping isn't slow in Julia (or C, C++, Fortran, etc.), loops and vectorization generally have the same speed. So use the one that works best for your code without a care about performance.
(As a small side effect, these high level languages tend to allocate a lot of temporary variables since the individual C kernels are written for specific numbers of inputs and thus don't naturally fuse. Julia's broadcast mechanism is just generating and JIT compiling Julia functions on the fly, and thus it can accommodate the combinatorial explosion in the amount of choices just by only compiling the combinations that are necessary for a specific code)
It's important to note that slices in Julia produce copies instead of views. Thus for example:
A[50,50]
0.42059142302723085
allocates a new output. This is for safety, since if it pointed to the same array then writing to it would change the original array. We can demonstrate this by asking for a view instead of a copy.
@show A[1] E = @view A[1:5,1:5] E[1] = 2.0 @show A[1]
A[1] = 0.4205674378699412 A[1] = 2.0 2.0
However, this means that @view A[1:5,1:5]
did not allocate an array (it does allocate a pointer if the escape analysis is unable to prove that it can be elided. This means that in small loops there will be no allocation, while if the view is returned from a function for example it will allocate the pointer, ~80 bytes, but not the memory of the array. This means that it is O(1) in cost but with a relatively small constant).
Heap allocations have to locate and prepare a space in RAM that is proportional to the amount of memory that is calculated, which means that the cost of a heap allocation for an array is O(n), with a large constant. As RAM begins to fill up, this cost dramatically increases. If you run out of RAM, your computer may begin to use swap, which is essentially RAM simulated on your hard drive. Generally when you hit swap your performance is so dead that you may think that your computation froze, but if you check your resource use you will notice that it's actually just filled the RAM and starting to use the swap.
But think of it as O(n) with a large constant factor. This means that for operations which only touch the data once, heap allocations can dominate the computational cost:
using LinearAlgebra, BenchmarkTools function alloc_timer(n) A = rand(n,n) B = rand(n,n) C = rand(n,n) t1 = @belapsed $A .* $B t2 = @belapsed ($C .= $A .* $B) t1,t2 end ns = 2 .^ (2:11) res = [alloc_timer(n) for n in ns] alloc = [x[1] for x in res] noalloc = [x[2] for x in res] using Plots plot(ns,alloc,label="=",xscale=:log10,yscale=:log10,legend=:bottomright, title="Micro-optimizations matter for BLAS1") plot!(ns,noalloc,label=".=")
However, when the computation takes O(n^3), like in matrix multiplications, the high constant factor only comes into play when the matrices are sufficiently small:
using LinearAlgebra, BenchmarkTools function alloc_timer(n) A = rand(n,n) B = rand(n,n) C = rand(n,n) t1 = @belapsed $A*$B t2 = @belapsed mul!($C,$A,$B) t1,t2 end ns = 2 .^ (2:7) res = [alloc_timer(n) for n in ns] alloc = [x[1] for x in res] noalloc = [x[2] for x in res] using Plots plot(ns,alloc,label="*",xscale=:log10,yscale=:log10,legend=:bottomright, title="Micro-optimizations only matter for small matmuls") plot!(ns,noalloc,label="mul!")
Though using a mutating form is never bad and always is a little bit better.
Avoid cache misses by reusing values
Iterate along columns
Avoid heap allocations in inner loops
Heap allocations occur when the size of things is not proven at compile-time
Use fused broadcasts (with mutated outputs) to avoid heap allocations
Array vectorization confers no special benefit in Julia because Julia loops are as fast as C or Fortran
Use views instead of slices when applicable
Avoiding heap allocations is most necessary for O(n) algorithms or algorithms with small arrays
Use StaticArrays.jl to avoid heap allocations of small arrays in inner loops
Many people think Julia is fast because it is JIT compiled. That is simply not true (we've already shown examples where Julia code isn't fast, but it's always JIT compiled!). Instead, the reason why Julia is fast is because the combination of two ideas:
Type inference
Type specialization in functions
These two features naturally give rise to Julia's core design feature: multiple dispatch. Let's break down these pieces.
At the core level of the computer, everything has a type. Some languages are more explicit about said types, while others try to hide the types from the user. A type tells the compiler how to to store and interpret the memory of a value. For example, if the compiled code knows that the value in the register is supposed to be interpreted as a 64-bit floating point number, then it understands that slab of memory like:
Importantly, it will know what to do for function calls. If the code tells it to add two floating point numbers, it will send them as inputs to the Floating Point Unit (FPU) which will give the output.
If the types are not known, then... ? So one cannot actually compute until the types are known, since otherwise it's impossible to interpret the memory. In languages like C, the programmer has to declare the types of variables in the program:
void add(double *a, double *b, double *c, size_t n){
size_t i;
for(i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
}
}
The types are known at compile time because the programmer set it in stone. In many interpreted languages Python, types are checked at runtime. For example,
a = 2
b = 4
a + b
when the addition occurs, the Python interpreter will check the object holding the values and ask it for its types, and use those types to know how to compute the + function. For this reason, the add function in Python is rather complex since it needs to decode and have a version for all primitive types!
Not only is there runtime overhead checks in function calls due to to not being explicit about types, there is also a memory overhead since it is impossible to know how much memory a value with take since that's a property of its type. Thus the Python interpreter cannot statically guarantee exact unchanging values for the size that a value would take in the stack, meaning that the variables are not stack-allocated. This means that every number ends up heap-allocated, which hopefully begins to explain why this is not as fast as C.
The solution is Julia is somewhat of a hybrid. The Julia code looks like:
a = 2 b = 4 a + b
6
However, before JIT compilation, Julia runs a type inference algorithm which finds out that A
is an Int
, and B
is an Int
. You can then understand that if it can prove that A+B
is an Int
, then it can propagate all of the types through.
Julia is able to propagate type inference through functions because, even if a function is "untyped", Julia will interpret this as a generic function over possible methods, where every method has a concrete type. This means that in Julia, the function:
f(x,y) = x+y
f (generic function with 1 method)
is not what you may think of as a "single function", since given inputs of different types it will actually be a different function. We can see this by examining the LLVM IR (LLVM is Julia's compiler, the IR is the Intermediate Representation, i.e. a platform-independent representation of assembly that lives in LLVM that it knows how to convert into assembly per architecture):
using InteractiveUtils @code_llvm f(2,5)
; Function Signature: f(Int64, Int64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `f` define i64 @julia_f_20652(i64 signext %"x::Int64", i64 signext %"y::Int64") #0 { top: ; ┌ @ int.jl:87 within `+` %0 = add i64 %"y::Int64", %"x::Int64" ret i64 %0 ; └ }
@code_llvm f(2.0,5.0)
; Function Signature: f(Float64, Float64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `f` define double @julia_f_20655(double %"x::Float64", double %"y::Float64") #0 { top: ; ┌ @ float.jl:491 within `+` %0 = fadd double %"x::Float64", %"y::Float64" ret double %0 ; └ }
Notice that when f
is the function that takes in two Int
s, Int
s add to give an Int
and thus f
outputs an Int
. When f
is the function that takes two Float64
s, f
returns a Float64
. Thus in the code:
function g(x,y) a = 4 b = 2 c = f(x,a) d = f(b,c) f(d,y) end @code_llvm g(2,5)
; Function Signature: g(Int64, Int64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `g` define i64 @julia_g_20659(i64 signext %"x::Int64", i64 signext %"y::Int64") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ int.jl:87 within `+` %0 = add i64 %"x::Int64", 6 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 7 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ int.jl:87 within `+` %1 = add i64 %0, %"y::Int64" ret i64 %1 ; └└ }
g
on two Int
inputs is a function that has Int
s at every step along the way and spits out an Int
. We can use the @code_warntype
macro to better see the inference along the steps of the function:
@code_warntype g(2,5)
MethodInstance for g(::Int64, ::Int64) from g(x, y) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizin g.jmd:2 Arguments #self#::Core.Const(Main.g) x::Int64 y::Int64 Locals d::Int64 c::Int64 b::Int64 a::Int64 Body::Int64 1 ─ (a = 4) │ (b = 2) │ %3 = a::Core.Const(4) │ (c = Main.f(x, %3)) │ %5 = b::Core.Const(2) │ %6 = c::Int64 │ (d = Main.f(%5, %6)) │ %8 = d::Int64 │ %9 = Main.f(%8, y)::Int64 └── return %9
What happens on mixtures?
@code_llvm f(2.0,5)
; Function Signature: f(Float64, Int64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `f` define double @julia_f_22917(double %"x::Float64", i64 signext %"y::Int64") #0 { top: ; ┌ @ promotion.jl:429 within `+` ; │┌ @ promotion.jl:400 within `promote` ; ││┌ @ promotion.jl:375 within `_promote` ; │││┌ @ number.jl:7 within `convert` ; ││││┌ @ float.jl:239 within `Float64` %0 = sitofp i64 %"y::Int64" to double ; │└└└└ ; │ @ promotion.jl:429 within `+` @ float.jl:491 %1 = fadd double %0, %"x::Float64" ret double %1 ; └ }
When we add an Int
to a Float64
, we promote the Int
to a Float64
and then perform the +
between two Float64
s. When we go to the full function, we see that it can still infer:
@code_warntype g(2.0,5)
MethodInstance for g(::Float64, ::Int64) from g(x, y) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizin g.jmd:2 Arguments #self#::Core.Const(Main.g) x::Float64 y::Int64 Locals d::Float64 c::Float64 b::Int64 a::Int64 Body::Float64 1 ─ (a = 4) │ (b = 2) │ %3 = a::Core.Const(4) │ (c = Main.f(x, %3)) │ %5 = b::Core.Const(2) │ %6 = c::Float64 │ (d = Main.f(%5, %6)) │ %8 = d::Float64 │ %9 = Main.f(%8, y)::Float64 └── return %9
and it uses this to build a very efficient assembly code because it knows exactly what the types will be at every step:
@code_llvm g(2.0,5)
; Function Signature: g(Float64, Int64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `g` define double @julia_g_22931(double %"x::Float64", i64 signext %"y::Int64") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ promotion.jl:429 within `+` @ float.jl:491 %0 = fadd double %"x::Float64", 4.000000e+00 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ promotion.jl:429 within `+` @ float.jl:491 %1 = fadd double %0, 2.000000e+00 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 7 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ promotion.jl:429 within `+` ; ││┌ @ promotion.jl:400 within `promote` ; │││┌ @ promotion.jl:375 within `_promote` ; ││││┌ @ number.jl:7 within `convert` ; │││││┌ @ float.jl:239 within `Float64` %2 = sitofp i64 %"y::Int64" to double ; ││└└└└ ; ││ @ promotion.jl:429 within `+` @ float.jl:491 %3 = fadd double %1, %2 ret double %3 ; └└ }
(notice how it handles the constant literals 4 and 2: it converted them at compile time to reduce the algorithm to 3 floating point additions).
Why is the inference algorithm able to infer all of the types of g
? It's because it knows the types coming out of f
at compile time. Given an Int
and a Float64
, f
will always output a Float64
, and thus it can continue with inference knowing that c
, d
, and eventually the output is Float64
. Thus in order for this to occur, we need that the type of the output on our function is directly inferred from the type of the input. This property is known as type-stability.
An example of breaking it is as follows:
function h(x,y) out = x + y rand() < 0.5 ? out : Float64(out) end
h (generic function with 1 method)
Here, on an integer input the output's type is randomly either Int or Float64, and thus the output is unknown:
@code_warntype h(2,5)
MethodInstance for h(::Int64, ::Int64) from h(x, y) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizin g.jmd:2 Arguments #self#::Core.Const(Main.h) x::Int64 y::Int64 Locals out::Int64 Body::UNION{FLOAT64, INT64} 1 ─ (out = x + y) │ %2 = Main.:<::Core.Const(<) │ %3 = Main.rand()::Float64 │ %4 = (%2)(%3, 0.5)::Bool └── goto #3 if not %4 2 ─ %6 = out::Int64 └── return %6 3 ─ %8 = out::Int64 │ %9 = Main.Float64(%8)::Float64 └── return %9
This means that its output type is Union{Int,Float64}
(Julia uses union types to keep the types still somewhat constrained). Once there are multiple choices, those need to get propagate through the compiler, and all subsequent calculations are the result of either being an Int
or a Float64
.
(Note that Julia has small union optimizations, so if this union is of size 4 or less then Julia will still be able to optimize it quite a bit.)
The +
function on numbers was implemented in Julia, so how were these rules all written down? The answer is multiple dispatch. In Julia, you can tell a function how to act differently on different types by using type assertions on the input values. For example, let's make a function that computes 2x + y
on Int
and x/y
on Float64
:
ff(x::Int,y::Int) = 2x + y ff(x::Float64,y::Float64) = x/y @show ff(2,5) @show ff(2.0,5.0)
ff(2, 5) = 9 ff(2.0, 5.0) = 0.4 0.4
The +
function in Julia is just defined as +(a,b)
, and we can actually point to that code in the Julia distribution:
@which +(2.0,5)+(x::Number, y::Number) in Base at promotion.jl:429
To control at a higher level, Julia uses abstract types. For example, Float64 <: AbstractFloat
, meaning Float64
s are a subtype of AbstractFloat
. We also have that Int <: Integer
, while both AbstractFloat <: Number
and Integer <: Number
.
Julia allows the user to define dispatches at a higher level, and the version that is called is the most strict version that is correct. For example, right now with ff
we will get a MethodError
if we call it between a Int
and a Float64
because no such method exists:
ff(2.0,5)
ERROR: MethodError: no method matching ff(::Float64, ::Int64) The function `ff` exists, but no method is defined for this combination of argument types. Closest candidates are: ff(::Float64, !Matched::Float64) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd:3 ff(!Matched::Int64, ::Int64) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd:2
However, we can add a fallback method to the function ff
for two numbers:
ff(x::Number,y::Number) = x + y ff(2.0,5)
7.0
Notice that the fallback method still specializes on the inputs:
@code_llvm ff(2.0,5)
; Function Signature: ff(Float64, Int64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `ff` define double @julia_ff_23780(double %"x::Float64", i64 signext %"y::Int64" ) #0 { top: ; ┌ @ promotion.jl:429 within `+` ; │┌ @ promotion.jl:400 within `promote` ; ││┌ @ promotion.jl:375 within `_promote` ; │││┌ @ number.jl:7 within `convert` ; ││││┌ @ float.jl:239 within `Float64` %0 = sitofp i64 %"y::Int64" to double ; │└└└└ ; │ @ promotion.jl:429 within `+` @ float.jl:491 %1 = fadd double %0, %"x::Float64" ret double %1 ; └ }
It's essentially just a template for what functions to possibly try and create given the types that are seen. When it sees Float64
and Int
, it knows it should try and create the function that does x+y
, and once it knows it's Float64
plus a Int
, it knows it should create the function that converts the Int
to a Float64
and then does addition between two Float64
s, and that is precisely the generated LLVM IR on this pair of input types.
And that's essentially Julia's secret sauce: since it's always specializing its types on each function, if those functions themselves can infer the output, then the entire function can be inferred and generate optimal code, which is then optimized by the compiler and out comes an efficient function. If types can't be inferred, Julia falls back to a slower "Python" mode (though with optimizations in cases like small unions). Users then get control over this specialization process through multiple dispatch, which is then Julia's core feature since it allows adding new options without any runtime cost.
Note that f(x,y) = x+y
is equivalent to f(x::Any,y::Any) = x+y
, where Any
is the maximal supertype of every Julia type. Thus f(x,y) = x+y
is essentially a fallback for all possible input values, telling it what to do in the case that no other dispatches exist. However, note that this dispatch itself is not slow, since it will be specialized on the input types.
The version that is called is the most strict version that is correct. What happens if it's impossible to define "the most strict version"? For example,
ff(x::Float64,y::Number) = 5x + 2y ff(x::Number,y::Int) = x - y
ff (generic function with 5 methods)
What should it call on f(2.0,5)
now? ff(x::Float64,y::Number)
and ff(x::Number,y::Int)
are both more strict than ff(x::Number,y::Number)
, so one of them should be called, but neither are more strict than each other, and thus you will end up with an ambiguity error:
ff(2.0,5)
ERROR: MethodError: ff(::Float64, ::Int64) is ambiguous. Candidates: ff(x::Number, y::Int64) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd:3 ff(x::Float64, y::Number) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd:2 Possible fix, define ff(::Float64, ::Int64)
One way to ruin inference is to use an untyped container. For example, the array constructors use type inference themselves to know what their container type will be. Therefore,
a = [1.0,2.0,3.0]
3-element Vector{Float64}: 1.0 2.0 3.0
uses type inference on its inputs to know that it should be something that holds Float64
values, and thus it is a 1-dimensional array of Float64
values, or Array{Float64,1}
. The accesses:
a[1]
1.0
are then inferred, since this is just the function getindex(a::Array{T},i) where T
which is a function that will produce something of type T
, the element type of the array. However, if we tell Julia to make an array with element type Any
:
b = ["1.0",2,2.0]
3-element Vector{Any}: "1.0" 2 2.0
(here, Julia falls back to Any
because it cannot promote the values to the same type), then the best inference can do on the output is to say it could have any type:
function bad_container(a) a[2] end @code_warntype bad_container(a)
MethodInstance for bad_container(::Vector{Float64}) from bad_container(a) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/ optimizing.jmd:2 Arguments #self#::Core.Const(Main.bad_container) a::Vector{Float64} Body::Float64 1 ─ %1 = Base.getindex(a, 2)::Float64 └── return %1
@code_warntype bad_container(b)
MethodInstance for bad_container(::Vector{Any}) from bad_container(a) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/ optimizing.jmd:2 Arguments #self#::Core.Const(Main.bad_container) a::Vector{Any} Body::ANY 1 ─ %1 = Base.getindex(a, 2)::ANY └── return %1
This is one common way that type inference can breakdown. For example, even if the array is all numbers, we can still break inference:
x = Number[1.0,3] function q(x) a = 4 b = 2 c = f(x[1],a) d = f(b,c) f(d,x[2]) end @code_warntype q(x)
MethodInstance for q(::Vector{Number}) from q(x) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.j md:3 Arguments #self#::Core.Const(Main.q) x::Vector{Number} Locals d::ANY c::ANY b::Int64 a::Int64 Body::ANY 1 ─ (a = 4) │ (b = 2) │ %3 = Main.f::Core.Const(Main.f) │ %4 = Base.getindex(x, 1)::NUMBER │ %5 = a::Core.Const(4) │ (c = (%3)(%4, %5)) │ %7 = b::Core.Const(2) │ %8 = c::ANY │ (d = Main.f(%7, %8)) │ %10 = Main.f::Core.Const(Main.f) │ %11 = d::ANY │ %12 = Base.getindex(x, 2)::NUMBER │ %13 = (%10)(%11, %12)::ANY └── return %13
Here the type inference algorithm quickly gives up and infers to Any
, losing all specialization and automatically switching to Python-style runtime type checking.
In Julia, types which can fully inferred and which are composed of primitive or isbits
types are value types. This means that, inside of an array, their values are the values of the type itself, and not a pointer to the values.
You can check if the type is a value type through isbits
:
isbits(1.0)
true
Note that a Julia struct
which holds isbits
values is isbits
as well, if it's fully inferred:
struct MyComplex real::Float64 imag::Float64 end isbits(MyComplex(1.0,1.0))
true
We can see that the compiler knows how to use this efficiently since it knows that what comes out is always Float64
:
Base.:+(a::MyComplex,b::MyComplex) = MyComplex(a.real+b.real,a.imag+b.imag) Base.:+(a::MyComplex,b::Int) = MyComplex(a.real+b,a.imag) Base.:+(b::Int,a::MyComplex) = MyComplex(a.real+b,a.imag) g(MyComplex(1.0,1.0),MyComplex(1.0,1.0))
MyComplex(8.0, 2.0)
@code_warntype g(MyComplex(1.0,1.0),MyComplex(1.0,1.0))
MethodInstance for g(::MyComplex, ::MyComplex) from g(x, y) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizin g.jmd:2 Arguments #self#::Core.Const(Main.g) x::MyComplex y::MyComplex Locals d::MyComplex c::MyComplex b::Int64 a::Int64 Body::MyComplex 1 ─ (a = 4) │ (b = 2) │ %3 = a::Core.Const(4) │ (c = Main.f(x, %3)) │ %5 = b::Core.Const(2) │ %6 = c::MyComplex │ (d = Main.f(%5, %6)) │ %8 = d::MyComplex │ %9 = Main.f(%8, y)::MyComplex └── return %9
@code_llvm g(MyComplex(1.0,1.0),MyComplex(1.0,1.0))
; Function Signature: g(Main.MyComplex, Main.MyComplex) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `g` define void @julia_g_24730(ptr noalias nocapture noundef nonnull sret([2 x double]) align 8 dereferenceable(16) %sret_return, ptr nocapture noundef no nnull readonly align 8 dereferenceable(16) %"x::MyComplex", ptr nocapture n oundef nonnull readonly align 8 dereferenceable(16) %"y::MyComplex") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:3 within `+` @ promotion.jl:429 @ float.jl:491 %"x::MyComplex.real_ptr.unbox" = load double, ptr %"x::MyComplex", alig n 8 %0 = fadd double %"x::MyComplex.real_ptr.unbox", 4.000000e+00 ; ││ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:3 within `+` ; ││┌ @ Base.jl:49 within `getproperty` %"x::MyComplex.imag_ptr" = getelementptr inbounds [2 x double], ptr %" x::MyComplex", i64 0, i64 1 ; └└└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:4 within `+` @ promotion.jl:429 @ float.jl:491 %1 = fadd double %0, 2.000000e+00 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 7 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:2 within `+` @ float.jl:491 %"x::MyComplex.imag_ptr.unbox" = load double, ptr %"x::MyComplex.imag_p tr", align 8 %2 = load <2 x double>, ptr %"y::MyComplex", align 8 %3 = insertelement <2 x double> poison, double %1, i64 0 %4 = insertelement <2 x double> %3, double %"x::MyComplex.imag_ptr.unbo x", i64 1 %5 = fadd <2 x double> %2, %4 ; ││ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:2 within `+` ; ││┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.j md:3 within `MyComplex` store <2 x double> %5, ptr %sret_return, align 8 ret void ; └└└ }
Note that the compiled code simply works directly on the double
pieces. We can also make this be concrete without pre-specifying that the values always have to be Float64
by using a type parameter.
struct MyParameterizedComplex{T} real::T imag::T end isbits(MyParameterizedComplex(1.0,1.0))
true
Note that MyParameterizedComplex{T}
is a concrete type for every T
: it is a shorthand form for defining a whole family of types.
Base.:+(a::MyParameterizedComplex,b::MyParameterizedComplex) = MyParameterizedComplex(a.real+b.real,a.imag+b.imag) Base.:+(a::MyParameterizedComplex,b::Int) = MyParameterizedComplex(a.real+b,a.imag) Base.:+(b::Int,a::MyParameterizedComplex) = MyParameterizedComplex(a.real+b,a.imag) g(MyParameterizedComplex(1.0,1.0),MyParameterizedComplex(1.0,1.0))
MyParameterizedComplex{Float64}(8.0, 2.0)
@code_warntype g(MyParameterizedComplex(1.0,1.0),MyParameterizedComplex(1.0,1.0))
MethodInstance for g(::MyParameterizedComplex{Float64}, ::MyParameterizedCo mplex{Float64}) from g(x, y) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizin g.jmd:2 Arguments #self#::Core.Const(Main.g) x::MyParameterizedComplex{Float64} y::MyParameterizedComplex{Float64} Locals d::MyParameterizedComplex{Float64} c::MyParameterizedComplex{Float64} b::Int64 a::Int64 Body::MyParameterizedComplex{Float64} 1 ─ (a = 4) │ (b = 2) │ %3 = a::Core.Const(4) │ (c = Main.f(x, %3)) │ %5 = b::Core.Const(2) │ %6 = c::MyParameterizedComplex{Float64} │ (d = Main.f(%5, %6)) │ %8 = d::MyParameterizedComplex{Float64} │ %9 = Main.f(%8, y)::MyParameterizedComplex{Float64} └── return %9
See that this code also automatically works and compiles efficiently for Float32
as well:
@code_warntype g(MyParameterizedComplex(1.0f0,1.0f0),MyParameterizedComplex(1.0f0,1.0f0))
MethodInstance for g(::MyParameterizedComplex{Float32}, ::MyParameterizedCo mplex{Float32}) from g(x, y) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizin g.jmd:2 Arguments #self#::Core.Const(Main.g) x::MyParameterizedComplex{Float32} y::MyParameterizedComplex{Float32} Locals d::MyParameterizedComplex{Float32} c::MyParameterizedComplex{Float32} b::Int64 a::Int64 Body::MyParameterizedComplex{Float32} 1 ─ (a = 4) │ (b = 2) │ %3 = a::Core.Const(4) │ (c = Main.f(x, %3)) │ %5 = b::Core.Const(2) │ %6 = c::MyParameterizedComplex{Float32} │ (d = Main.f(%5, %6)) │ %8 = d::MyParameterizedComplex{Float32} │ %9 = Main.f(%8, y)::MyParameterizedComplex{Float32} └── return %9
@code_llvm g(MyParameterizedComplex(1.0f0,1.0f0),MyParameterizedComplex(1.0f0,1.0f0))
; Function Signature: g(Main.MyParameterizedComplex{Float32}, Main.MyParame terizedComplex{Float32}) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `g` define [2 x float] @julia_g_24806(ptr nocapture noundef nonnull readonly al ign 4 dereferenceable(8) %"x::MyParameterizedComplex", ptr nocapture nounde f nonnull readonly align 4 dereferenceable(8) %"y::MyParameterizedComplex") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:3 within `+` @ promotion.jl:429 @ float.jl:491 %"x::MyParameterizedComplex.real_ptr.unbox" = load float, ptr %"x::MyPa rameterizedComplex", align 4 %0 = fadd float %"x::MyParameterizedComplex.real_ptr.unbox", 4.000000e+ 00 ; ││ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:3 within `+` ; ││┌ @ Base.jl:49 within `getproperty` %"x::MyParameterizedComplex.imag_ptr" = getelementptr inbounds [2 x fl oat], ptr %"x::MyParameterizedComplex", i64 0, i64 1 ; └└└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:4 within `+` @ promotion.jl:429 @ float.jl:491 %1 = fadd float %0, 2.000000e+00 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 7 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` ; │┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:2 within `+` @ float.jl:491 %"y::MyParameterizedComplex.real_ptr.unbox" = load float, ptr %"y::MyPa rameterizedComplex", align 4 %2 = fadd float %"y::MyParameterizedComplex.real_ptr.unbox", %1 ; ││ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:2 within `+` ; ││┌ @ Base.jl:49 within `getproperty` %"y::MyParameterizedComplex.imag_ptr" = getelementptr inbounds [2 x fl oat], ptr %"y::MyParameterizedComplex", i64 0, i64 1 ; ││└ ; ││ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:2 within `+` @ float.jl:491 %"x::MyParameterizedComplex.imag_ptr.unbox" = load float, ptr %"x::MyPa rameterizedComplex.imag_ptr", align 4 %"y::MyParameterizedComplex.imag_ptr.unbox" = load float, ptr %"y::MyPa rameterizedComplex.imag_ptr", align 4 %3 = fadd float %"x::MyParameterizedComplex.imag_ptr.unbox", %"y::MyPar ameterizedComplex.imag_ptr.unbox" ; ││ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jm d:2 within `+` ; ││┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.j md:3 within `MyParameterizedComplex` %"new::MyParameterizedComplex.unbox.fca.0.insert" = insertvalue [2 x f loat] zeroinitializer, float %2, 0 %"new::MyParameterizedComplex.unbox.fca.1.insert" = insertvalue [2 x f loat] %"new::MyParameterizedComplex.unbox.fca.0.insert", float %3, 1 ret [2 x float] %"new::MyParameterizedComplex.unbox.fca.1.insert" ; └└└ }
It is important to know that if there is any piece of a type which doesn't contain type information, then it cannot be isbits because then it would have to be compiled in such a way that the size is not known in advance. For example:
struct MySlowComplex real imag end isbits(MySlowComplex(1.0,1.0))
false
Base.:+(a::MySlowComplex,b::MySlowComplex) = MySlowComplex(a.real+b.real,a.imag+b.imag) Base.:+(a::MySlowComplex,b::Int) = MySlowComplex(a.real+b,a.imag) Base.:+(b::Int,a::MySlowComplex) = MySlowComplex(a.real+b,a.imag) g(MySlowComplex(1.0,1.0),MySlowComplex(1.0,1.0))
MySlowComplex(8.0, 2.0)
@code_warntype g(MySlowComplex(1.0,1.0),MySlowComplex(1.0,1.0))
MethodInstance for g(::MySlowComplex, ::MySlowComplex) from g(x, y) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizin g.jmd:2 Arguments #self#::Core.Const(Main.g) x::MySlowComplex y::MySlowComplex Locals d::MySlowComplex c::MySlowComplex b::Int64 a::Int64 Body::MySlowComplex 1 ─ (a = 4) │ (b = 2) │ %3 = a::Core.Const(4) │ (c = Main.f(x, %3)) │ %5 = b::Core.Const(2) │ %6 = c::MySlowComplex │ (d = Main.f(%5, %6)) │ %8 = d::MySlowComplex │ %9 = Main.f(%8, y)::MySlowComplex └── return %9
@code_llvm g(MySlowComplex(1.0,1.0),MySlowComplex(1.0,1.0))
; Function Signature: g(Main.MySlowComplex, Main.MySlowComplex) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `g` define void @julia_g_24891(ptr noalias nocapture noundef nonnull sret([2 x ptr]) align 8 dereferenceable(16) %sret_return, ptr nocapture noundef nonnu ll readonly align 8 dereferenceable(16) %"x::MySlowComplex", ptr nocapture noundef nonnull readonly align 8 dereferenceable(16) %"y::MySlowComplex") # 0 { top: %gcframe1 = alloca [8 x ptr], align 16 call void @llvm.memset.p0.i64(ptr align 16 %gcframe1, i8 0, i64 64, i1 tr ue) %0 = getelementptr inbounds ptr, ptr %gcframe1, i64 6 %1 = getelementptr inbounds ptr, ptr %gcframe1, i64 4 %2 = getelementptr inbounds ptr, ptr %gcframe1, i64 2 %thread_ptr = call ptr asm "movq %fs:0, $0", "=r"() #13 %tls_ppgcstack = getelementptr i8, ptr %thread_ptr, i64 -8 %tls_pgcstack = load ptr, ptr %tls_ppgcstack, align 8 store i64 24, ptr %gcframe1, align 16 %frame.prev = getelementptr inbounds ptr, ptr %gcframe1, i64 1 %task.gcstack = load ptr, ptr %tls_pgcstack, align 8 store ptr %task.gcstack, ptr %frame.prev, align 8 store ptr %gcframe1, ptr %tls_pgcstack, align 8 ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` call void @"j_+_24895"(ptr noalias nocapture noundef nonnull sret([2 x p tr]) %2, ptr nocapture nonnull readonly %"x::MySlowComplex", i64 signext 4) ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` call void @"j_+_24896"(ptr noalias nocapture noundef nonnull sret([2 x p tr]) %0, i64 signext 2, ptr nocapture nonnull readonly %2) ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 7 within `g` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :2 within `f` call void @"j_+_24897"(ptr noalias nocapture noundef nonnull sret([2 x p tr]) %1, ptr nocapture nonnull readonly %0, ptr nocapture nonnull readonly %"y::MySlowComplex") call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 8 dereference able(16) %sret_return, ptr noundef nonnull align 16 dereferenceable(16) %1, i64 16, i1 false) %frame.prev5 = load ptr, ptr %frame.prev, align 8 store ptr %frame.prev5, ptr %tls_pgcstack, align 8 ret void ; └ }
struct MySlowComplex2 real::AbstractFloat imag::AbstractFloat end isbits(MySlowComplex2(1.0,1.0))
false
Base.:+(a::MySlowComplex2,b::MySlowComplex2) = MySlowComplex2(a.real+b.real,a.imag+b.imag) Base.:+(a::MySlowComplex2,b::Int) = MySlowComplex2(a.real+b,a.imag) Base.:+(b::Int,a::MySlowComplex2) = MySlowComplex2(a.real+b,a.imag) g(MySlowComplex2(1.0,1.0),MySlowComplex2(1.0,1.0))
MySlowComplex2(8.0, 2.0)
Here's the timings:
a = MyComplex(1.0,1.0) b = MyComplex(2.0,1.0) @btime g(a,b)
20.469 ns (1 allocation: 32 bytes) MyComplex(9.0, 2.0)
a = MyParameterizedComplex(1.0,1.0) b = MyParameterizedComplex(2.0,1.0) @btime g(a,b)
20.540 ns (1 allocation: 32 bytes) MyParameterizedComplex{Float64}(9.0, 2.0)
a = MySlowComplex(1.0,1.0) b = MySlowComplex(2.0,1.0) @btime g(a,b)
111.946 ns (5 allocations: 96 bytes) MySlowComplex(9.0, 2.0)
a = MySlowComplex2(1.0,1.0) b = MySlowComplex2(2.0,1.0) @btime g(a,b)
657.580 ns (14 allocations: 288 bytes) MySlowComplex2(9.0, 2.0)
Note that, because of these type specialization, value types, etc. properties, the number types, even ones such as Int
, Float64
, and Complex
, are all themselves implemented in pure Julia! Thus even basic pieces can be implemented in Julia with full performance, given one uses the features correctly.
Note that a type which is mutable struct
will not be isbits. This means that mutable structs will be a pointer to a heap allocated object, unless it's shortlived and the compiler can erase its construction. Also, note that isbits
compiles down to bit operations from pure Julia, which means that these types can directly compile to GPU kernels through CUDAnative without modification.
Since functions automatically specialize on their input types in Julia, we can use this to our advantage in order to make an inner loop fully inferred. For example, take the code from above but with a loop:
function r(x) a = 4 b = 2 for i in 1:100 c = f(x[1],a) d = f(b,c) a = f(d,x[2]) end a end @btime r(x)
5.838 μs (300 allocations: 4.69 KiB) 604.0
In here, the loop variables are not inferred and thus this is really slow. However, we can force a function call in the middle to end up with specialization and in the inner loop be stable:
s(x) = _s(x[1],x[2]) function _s(x1,x2) a = 4 b = 2 for i in 1:100 c = f(x1,a) d = f(b,c) a = f(d,x2) end a end @btime s(x)
297.579 ns (1 allocation: 16 bytes) 604.0
Notice that this algorithm still doesn't infer:
@code_warntype s(x)
MethodInstance for s(::Vector{Number}) from s(x) @ Main ~/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.j md:2 Arguments #self#::Core.Const(Main.s) x::Vector{Number} Body::ANY 1 ─ %1 = Main._s::Core.Const(Main._s) │ %2 = Base.getindex(x, 1)::NUMBER │ %3 = Base.getindex(x, 2)::NUMBER │ %4 = (%1)(%2, %3)::ANY └── return %4
since the output of _s
isn't inferred, but while it's in _s
it will have specialized on the fact that x[1]
is a Float64
while x[2]
is a Int
, making that inner loop fast. In fact, it will only need to pay one dynamic dispatch, i.e. a multiple dispatch determination that happens at runtime. Notice that whenever functions are inferred, the dispatching is static since the choice of the dispatch is already made and compiled into the LLVM IR.
Julia code will specialize at compile time if it can prove something about the result. For example:
function fff(x) if x isa Int y = 2 else y = 4.0 end x + y end
fff (generic function with 1 method)
You might think this function has a branch, but in reality Julia can determine whether x
is an Int
or not at compile time, so it will actually compile it away and just turn it into the function x+2
or x+4.0
:
@code_llvm fff(5)
; Function Signature: fff(Int64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `fff` define i64 @julia_fff_25354(i64 signext %"x::Int64") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 8 within `fff` ; ┌ @ int.jl:87 within `+` %0 = add i64 %"x::Int64", 2 ret i64 %0 ; └ }
@code_llvm fff(2.0)
; Function Signature: fff(Float64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `fff` define double @julia_fff_25357(double %"x::Float64") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 8 within `fff` ; ┌ @ float.jl:491 within `+` %0 = fadd double %"x::Float64", 4.000000e+00 ret double %0 ; └ }
Thus one does not need to worry about over-optimizing since in the obvious cases the compiler will actually remove all of the extra pieces when it can!
This discussion shows how Julia's optimizations all apply during function specialization times. Thus calling Julia functions is fast. But what about when doing something outside of the function, like directly in a module or in the REPL?
@btime for j in 1:100, i in 1:100 global A,B,C C[i,j] = A[i,j] + B[i,j] end
777.890 μs (30000 allocations: 468.75 KiB)
This is very slow because the types of A
, B
, and C
cannot be inferred. Why can't they be inferred? Well, at any time in the dynamic REPL scope I can do something like C = "haha now a string!"
, and thus it cannot specialize on the types currently existing in the REPL (since asynchronous changes could also occur), and therefore it defaults back to doing a type check at every single function which slows it down. Moral of the story, Julia functions are fast but its global scope is too dynamic to be optimized.
Julia is not fast because of its JIT, it's fast because of function specialization and type inference
Type stable functions allow inference to fully occur
Multiple dispatch works within the function specialization mechanism to create overhead-free compile time controls
Julia will specialize the generic functions
Making sure values are concretely typed in inner loops is essential for performance
Now let's dig even a little deeper. Everything the processor does has a cost. A great chart to keep in mind is this classic one. A few things should immediately jump out to you:
Simple arithmetic, like floating point additions, are super cheap. ~1 clock cycle, or a few nanoseconds.
Processors do branch prediction on if
statements. If the code goes down the predicted route, the if
statement costs ~1-2 clock cycles. If it goes down the wrong route, then it will take ~10-20 clock cycles. This means that predictable branches, like ones with clear patterns or usually the same output, are much cheaper (almost free) than unpredictable branches.
Function calls are expensive: 15-60 clock cycles!
RAM reads are very expensive, with lower caches less expensive.
Let's check the LLVM IR on one of our earlier loops:
function inner_noalloc!(C,A,B) for j in 1:100, i in 1:100 val = A[i,j] + B[i,j] C[i,j] = val[1] end end @code_llvm inner_noalloc!(C,A,B)
; Function Signature: inner_noalloc!(Array{Float64, 2}, Array{Float64, 2}, Array{Float64, 2}) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `inner_noalloc!` define nonnull ptr @"japi1_inner_noalloc!_25421"(ptr %"function::Core.Funct ion", ptr noalias nocapture noundef readonly %"args::Any[]", i32 %"nargs::U Int32") #0 { top: %stackargs = alloca ptr, align 8 store volatile ptr %"args::Any[]", ptr %stackargs, align 8 %"new::Tuple" = alloca [2 x i64], align 8 %"new::Tuple33" = alloca [2 x i64], align 8 %"new::Tuple76" = alloca [2 x i64], align 8 %0 = load ptr, ptr %"args::Any[]", align 8 %1 = getelementptr inbounds ptr, ptr %"args::Any[]", i64 1 %2 = load ptr, ptr %1, align 8 %3 = getelementptr inbounds ptr, ptr %"args::Any[]", i64 2 %4 = load ptr, ptr %3, align 8 %5 = getelementptr inbounds i8, ptr %2, i64 16 %.size.sroa.0.0.copyload = load i64, ptr %5, align 8 %.size.sroa.2.0..sroa_idx = getelementptr inbounds i8, ptr %2, i64 24 %.size.sroa.2.0.copyload = load i64, ptr %.size.sroa.2.0..sroa_idx, align 8 %6 = getelementptr inbounds i8, ptr %4, i64 16 %.size35.sroa.2.0..sroa_idx = getelementptr inbounds i8, ptr %4, i64 24 %7 = getelementptr inbounds i8, ptr %0, i64 16 %.size78.sroa.2.0..sroa_idx = getelementptr inbounds i8, ptr %0, i64 24 %8 = add i64 %.size.sroa.0.0.copyload, 1 %9 = add i64 %.size.sroa.0.0.copyload, -1 %10 = shl i64 %.size.sroa.0.0.copyload, 3 br label %L2 L2: ; preds = %L178, %top %indvar = phi i64 [ %indvar.next, %L178 ], [ 0, %top ] %value_phi = phi i64 [ %70, %L178 ], [ 1, %top ] %11 = shl nuw nsw i64 %indvar, 3 %12 = mul i64 %10, %indvar %13 = add i64 %12, 8 %14 = add i64 %12, 16 %15 = add nsw i64 %value_phi, -1 %16 = icmp uge i64 %15, %.size.sroa.2.0.copyload %17 = mul i64 %.size.sroa.0.0.copyload, %15 %18 = load ptr, ptr %2, align 8 %.size35.sroa.0.0.copyload = load i64, ptr %6, align 8 ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 3 within `inner_noalloc!` %.size35.sroa.0.0.copyload.fr = freeze i64 %.size35.sroa.0.0.copyload %19 = mul i64 %.size35.sroa.0.0.copyload.fr, %15 %20 = load ptr, ptr %4, align 8 %.size78.sroa.0.0.copyload = load i64, ptr %7, align 8 %.size78.sroa.0.0.copyload.fr = freeze i64 %.size78.sroa.0.0.copyload %.size78.sroa.2.0.copyload = load i64, ptr %.size78.sroa.2.0..sroa_idx, a lign 8 %21 = icmp uge i64 %15, %.size78.sroa.2.0.copyload %22 = load ptr, ptr %0, align 8 %23 = mul i64 %.size78.sroa.0.0.copyload.fr, %15 %.fr = freeze i1 %16 br i1 %.fr, label %L31, label %L2.split L2.split: ; preds = %L2 %.size35.sroa.2.0.copyload = load i64, ptr %.size35.sroa.2.0..sroa_idx, a lign 8 %24 = icmp uge i64 %15, %.size35.sroa.2.0.copyload %.fr240 = freeze i1 %24 br i1 %.fr240, label %L2.split.split.us, label %L2.split.split L2.split.split.us: ; preds = %L2.split ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc!` ; ┌ @ array.jl:929 within `getindex` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %25 = icmp eq i64 %.size.sroa.0.0.copyload, 0 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %25, label %L31, label %L88 L2.split.split: ; preds = %L2.split %.fr359 = freeze i1 %21 br i1 %.fr359, label %L2.split.split.split.us, label %L2.split.split.sp lit L2.split.split.split.us: ; preds = %L2.split.split ; ││ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %26 = icmp eq i64 %.size.sroa.0.0.copyload, 0 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %26, label %L31, label %L34.us313 L34.us313: ; preds = %L2.split.split .split.us ; ││ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %27 = icmp eq i64 %.size35.sroa.0.0.copyload.fr, 0 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %27, label %L88, label %L150 L2.split.split.split: ; preds = %L2.split.split ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 3 within `inner_noalloc!` %28 = add i64 %.size35.sroa.0.0.copyload.fr, 1 %29 = add i64 %.size78.sroa.0.0.copyload.fr, 1 ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc!` ; ┌ @ array.jl:929 within `getindex` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %exitcond.peel = icmp eq i64 %.size.sroa.0.0.copyload, 0 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %exitcond.peel, label %L31, label %L34.peel L34.peel: ; preds = %L2.split.split .split ; │└ ; │ @ array.jl:930 within `getindex` @ essentials.jl:917 %30 = getelementptr inbounds double, ptr %18, i64 %17 %31 = load double, ptr %30, align 8 ; │ @ array.jl:929 within `getindex` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %exitcond499.peel = icmp eq i64 %.size35.sroa.0.0.copyload.fr, 0 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %exitcond499.peel, label %L88, label %L91.peel L91.peel: ; preds = %L34.peel ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc!` ; ┌ @ array.jl:993 within `setindex!` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %exitcond500.peel = icmp eq i64 %.size78.sroa.0.0.copyload.fr, 0 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %exitcond500.peel, label %L150, label %L4.peel.next L4.peel.next: ; preds = %L91.peel ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %32 = getelementptr inbounds double, ptr %20, i64 %19 %33 = load double, ptr %32, align 8 ; └ ; ┌ @ float.jl:491 within `+` %34 = fadd double %31, %33 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc!` ; ┌ @ array.jl:994 within `setindex!` %35 = getelementptr inbounds double, ptr %22, i64 %23 store double %34, ptr %35, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 3 within `inner_noalloc!` %36 = add i64 %.size78.sroa.0.0.copyload.fr, -1 %37 = add i64 %.size35.sroa.0.0.copyload.fr, -1 %umin653 = call i64 @llvm.umin.i64(i64 %36, i64 %37) %umin654 = call i64 @llvm.umin.i64(i64 %umin653, i64 %9) %umin655 = call i64 @llvm.umin.i64(i64 %umin654, i64 98) %38 = add nuw nsw i64 %umin655, 1 %min.iters.check = icmp ult i64 %umin655, 16 br i1 %min.iters.check, label %scalar.ph, label %vector.memcheck vector.memcheck: ; preds = %L4.peel.next %uglygep = getelementptr i8, ptr %22, i64 8 %39 = mul i64 %.size78.sroa.0.0.copyload.fr, %11 %uglygep639 = getelementptr i8, ptr %uglygep, i64 %39 %uglygep640 = getelementptr i8, ptr %22, i64 16 %40 = shl nuw nsw i64 %umin655, 3 %41 = add i64 %39, %40 %uglygep643 = getelementptr i8, ptr %uglygep640, i64 %41 %uglygep644 = getelementptr i8, ptr %18, i64 %13 %42 = add i64 %14, %40 %uglygep645 = getelementptr i8, ptr %18, i64 %42 %uglygep646 = getelementptr i8, ptr %20, i64 8 %43 = mul i64 %.size35.sroa.0.0.copyload.fr, %11 %uglygep647 = getelementptr i8, ptr %uglygep646, i64 %43 %uglygep648 = getelementptr i8, ptr %20, i64 16 %44 = add i64 %43, %40 %uglygep649 = getelementptr i8, ptr %uglygep648, i64 %44 %bound0 = icmp ult ptr %uglygep639, %uglygep645 %bound1 = icmp ult ptr %uglygep644, %uglygep643 %found.conflict = and i1 %bound0, %bound1 %bound0650 = icmp ult ptr %uglygep639, %uglygep649 %bound1651 = icmp ult ptr %uglygep647, %uglygep643 %found.conflict652 = and i1 %bound0650, %bound1651 %conflict.rdx = or i1 %found.conflict, %found.conflict652 br i1 %conflict.rdx, label %scalar.ph, label %vector.ph vector.ph: ; preds = %vector.memchec k %n.mod.vf = and i64 %38, 3 %45 = icmp eq i64 %n.mod.vf, 0 %46 = select i1 %45, i64 4, i64 %n.mod.vf %n.vec = sub nsw i64 %38, %46 %ind.end = add nsw i64 %n.vec, 2 br label %vector.body vector.body: ; preds = %vector.body, % vector.ph %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc!` ; ┌ @ array.jl:929 within `getindex` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:86 within `-` %47 = or i64 %index, 1 ; │└└└└ ; │ @ array.jl:930 within `getindex` @ essentials.jl:917 %48 = add i64 %47, %17 %49 = getelementptr inbounds double, ptr %18, i64 %48 %wide.load = load <4 x double>, ptr %49, align 8 %50 = add i64 %47, %19 %51 = getelementptr inbounds double, ptr %20, i64 %50 %wide.load656 = load <4 x double>, ptr %51, align 8 ; └ ; ┌ @ float.jl:491 within `+` %52 = fadd <4 x double> %wide.load, %wide.load656 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc!` ; ┌ @ array.jl:994 within `setindex!` %53 = add i64 %47, %23 %54 = getelementptr inbounds double, ptr %22, i64 %53 store <4 x double> %52, ptr %54, align 8 %index.next = add nuw i64 %index, 4 %55 = icmp eq i64 %index.next, %n.vec br i1 %55, label %scalar.ph, label %vector.body scalar.ph: ; preds = %vector.body, % vector.memcheck, %L4.peel.next %bc.resume.val = phi i64 [ 2, %L4.peel.next ], [ 2, %vector.memcheck ], [ %ind.end, %vector.body ] ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 3 within `inner_noalloc!` br label %L4 L4: ; preds = %L153, %scalar. ph %value_phi2 = phi i64 [ %bc.resume.val, %scalar.ph ], [ %69, %L153 ] ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc!` ; ┌ @ array.jl:929 within `getindex` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:86 within `-` %56 = add nsw i64 %value_phi2, -1 ; ││││└ ; ││││┌ @ int.jl:513 within `<` %exitcond = icmp eq i64 %value_phi2, %8 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %exitcond, label %L31, label %L34 L31: ; preds = %L4, %L2.split. split.split, %L2.split.split.split.us, %L2.split.split.us, %L2 %.us-phi170 = phi i64 [ 1, %L2.split.split.us ], [ 1, %L2.split.split.s plit.us ], [ %8, %L4 ], [ 1, %L2 ], [ %8, %L2.split.split.split ] %57 = getelementptr inbounds [2 x i64], ptr %"new::Tuple", i64 0, i64 1 ; ││ @ abstractarray.jl:697 within `checkbounds` store i64 %.us-phi170, ptr %"new::Tuple", align 8 store i64 %value_phi, ptr %57, align 8 ; ││ @ abstractarray.jl:699 within `checkbounds` call void @j_throw_boundserror_25438(ptr nonnull %2, ptr nocapture nonn ull readonly %"new::Tuple") #7 unreachable L34: ; preds = %L4 ; │└ ; │ @ array.jl:930 within `getindex` @ essentials.jl:917 %58 = add i64 %56, %17 %59 = getelementptr inbounds double, ptr %18, i64 %58 %60 = load double, ptr %59, align 8 ; │ @ array.jl:929 within `getindex` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %exitcond499 = icmp eq i64 %value_phi2, %28 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %exitcond499, label %L88, label %L91 L88: ; preds = %L34, %L34.peel , %L34.us313, %L2.split.split.us %.us-phi236 = phi i64 [ 1, %L2.split.split.us ], [ 1, %L34.us313 ], [ % 28, %L34 ], [ %28, %L34.peel ] %61 = getelementptr inbounds [2 x i64], ptr %"new::Tuple33", i64 0, i64 1 ; ││ @ abstractarray.jl:697 within `checkbounds` store i64 %.us-phi236, ptr %"new::Tuple33", align 8 store i64 %value_phi, ptr %61, align 8 ; ││ @ abstractarray.jl:699 within `checkbounds` call void @j_throw_boundserror_25438(ptr nonnull %4, ptr nocapture nonn ull readonly %"new::Tuple33") #7 unreachable L91: ; preds = %L34 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc!` ; ┌ @ array.jl:993 within `setindex!` ; │┌ @ abstractarray.jl:699 within `checkbounds` @ abstractarray.jl:681 ; ││┌ @ abstractarray.jl:725 within `checkbounds_indices` ; │││┌ @ abstractarray.jl:754 within `checkindex` ; ││││┌ @ int.jl:513 within `<` %exitcond500 = icmp eq i64 %value_phi2, %29 ; ││└└└ ; ││ @ abstractarray.jl:699 within `checkbounds` br i1 %exitcond500, label %L150, label %L153 L150: ; preds = %L91, %L91.peel , %L34.us313 %.us-phi352 = phi i64 [ 1, %L34.us313 ], [ %29, %L91 ], [ %29, %L91.pee l ] %62 = getelementptr inbounds [2 x i64], ptr %"new::Tuple76", i64 0, i64 1 ; ││ @ abstractarray.jl:697 within `checkbounds` store i64 %.us-phi352, ptr %"new::Tuple76", align 8 store i64 %value_phi, ptr %62, align 8 ; ││ @ abstractarray.jl:699 within `checkbounds` call void @j_throw_boundserror_25438(ptr nonnull %0, ptr nocapture nonn ull readonly %"new::Tuple76") #7 unreachable L153: ; preds = %L91 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %63 = add i64 %56, %19 %64 = getelementptr inbounds double, ptr %20, i64 %63 %65 = load double, ptr %64, align 8 ; └ ; ┌ @ float.jl:491 within `+` %66 = fadd double %60, %65 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc!` ; ┌ @ array.jl:994 within `setindex!` %67 = add i64 %56, %23 %68 = getelementptr inbounds double, ptr %22, i64 %67 store double %66, ptr %68, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc!` ; ┌ @ range.jl:908 within `iterate` ; │┌ @ promotion.jl:639 within `==` %.not.not = icmp eq i64 %value_phi2, 100 ; │└ %69 = add nuw nsw i64 %value_phi2, 1 ; └ br i1 %.not.not, label %L178, label %L4 L178: ; preds = %L153 ; ┌ @ range.jl:908 within `iterate` ; │┌ @ promotion.jl:639 within `==` %.not.not134 = icmp eq i64 %value_phi, 100 ; │└ %70 = add nuw nsw i64 %value_phi, 1 ; └ %indvar.next = add i64 %indvar, 1 br i1 %.not.not134, label %L189, label %L2 L189: ; preds = %L178 %jl_nothing = load ptr, ptr @jl_nothing, align 8 ret ptr %jl_nothing }
Notice that this getelementptr inbounds
stuff is bounds checking. Julia, like all other high level languages, enables bounds checking by default in order to not allow the user to index outside of an array. Indexing outside of an array is dangerous: it can quite easily segfault your system if you change some memory that is unknown beyond your actual array. Thus Julia throws an error:
A[101,1]
ERROR: BoundsError: attempt to access 100×100 Matrix{Float64} at index [101, 1]
In tight inner loops, we can remove this bounds checking process using the @inbounds
macro:
function inner_noalloc_ib!(C,A,B) @inbounds for j in 1:100, i in 1:100 val = A[i,j] + B[i,j] C[i,j] = val[1] end end @btime inner_noalloc!(C,A,B)
3.148 μs (0 allocations: 0 bytes)
@btime inner_noalloc_ib!(C,A,B)
2.378 μs (0 allocations: 0 bytes)
Now let's inspect the LLVM IR again:
@code_llvm inner_noalloc_ib!(C,A,B)
; Function Signature: inner_noalloc_ib!(Array{Float64, 2}, Array{Float64, 2 }, Array{Float64, 2}) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `inner_noalloc_ib!` define nonnull ptr @"japi1_inner_noalloc_ib!_25807"(ptr %"function::Core.Fu nction", ptr noalias nocapture noundef readonly %"args::Any[]", i32 %"nargs ::UInt32") #0 { top: %stackargs = alloca ptr, align 8 store volatile ptr %"args::Any[]", ptr %stackargs, align 8 %0 = load ptr, ptr %"args::Any[]", align 8 %1 = getelementptr inbounds ptr, ptr %"args::Any[]", i64 1 %2 = load ptr, ptr %1, align 8 %3 = getelementptr inbounds ptr, ptr %"args::Any[]", i64 2 %4 = load ptr, ptr %3, align 8 %5 = getelementptr inbounds i8, ptr %2, i64 16 %.size14.sroa.0.0.copyload = load i64, ptr %5, align 8 %6 = load ptr, ptr %2, align 8 %7 = getelementptr inbounds i8, ptr %4, i64 16 %.size51.sroa.0.0.copyload = load i64, ptr %7, align 8 %8 = load ptr, ptr %4, align 8 %9 = load ptr, ptr %0, align 8 %10 = getelementptr inbounds i8, ptr %0, i64 16 %.size96.sroa.0.0.copyload = load i64, ptr %10, align 8 %11 = shl i64 %.size96.sroa.0.0.copyload, 3 %12 = shl i64 %.size14.sroa.0.0.copyload, 3 %13 = shl i64 %.size51.sroa.0.0.copyload, 3 br label %L2 L2: ; preds = %L178, %top %indvar = phi i64 [ %indvar.next, %L178 ], [ 0, %top ] %value_phi = phi i64 [ %696, %L178 ], [ 1, %top ] %14 = add nsw i64 %value_phi, -1 %15 = mul i64 %.size14.sroa.0.0.copyload, %14 %16 = mul i64 %.size51.sroa.0.0.copyload, %14 %17 = mul i64 %.size96.sroa.0.0.copyload, %14 %18 = mul i64 %13, %indvar %19 = add i64 %18, 800 %uglygep133 = getelementptr i8, ptr %8, i64 %19 %uglygep132 = getelementptr i8, ptr %8, i64 %18 %20 = mul i64 %12, %indvar %21 = add i64 %20, 800 %uglygep131 = getelementptr i8, ptr %6, i64 %21 %uglygep130 = getelementptr i8, ptr %6, i64 %20 %22 = mul i64 %11, %indvar %23 = add i64 %22, 800 %uglygep129 = getelementptr i8, ptr %9, i64 %23 %uglygep = getelementptr i8, ptr %9, i64 %22 ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 3 within `inner_noalloc_ib!` %bound0 = icmp ult ptr %uglygep, %uglygep131 %bound1 = icmp ult ptr %uglygep130, %uglygep129 %found.conflict = and i1 %bound0, %bound1 %bound0134 = icmp ult ptr %uglygep, %uglygep133 %bound1135 = icmp ult ptr %uglygep132, %uglygep129 %found.conflict136 = and i1 %bound0134, %bound1135 %conflict.rdx = or i1 %found.conflict, %found.conflict136 br i1 %conflict.rdx, label %L4, label %vector.body.preheader vector.body.preheader: ; preds = %L2 ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %24 = getelementptr inbounds double, ptr %6, i64 %15 %wide.load = load <4 x double>, ptr %24, align 8 %25 = getelementptr inbounds double, ptr %8, i64 %16 %wide.load137 = load <4 x double>, ptr %25, align 8 ; └ ; ┌ @ float.jl:491 within `+` %26 = fadd <4 x double> %wide.load, %wide.load137 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %27 = getelementptr inbounds double, ptr %9, i64 %17 store <4 x double> %26, ptr %27, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %28 = add i64 %15, 4 %29 = getelementptr inbounds double, ptr %6, i64 %28 %wide.load.1 = load <4 x double>, ptr %29, align 8 %30 = add i64 %16, 4 %31 = getelementptr inbounds double, ptr %8, i64 %30 %wide.load137.1 = load <4 x double>, ptr %31, align 8 ; └ ; ┌ @ float.jl:491 within `+` %32 = fadd <4 x double> %wide.load.1, %wide.load137.1 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %33 = add i64 %17, 4 %34 = getelementptr inbounds double, ptr %9, i64 %33 store <4 x double> %32, ptr %34, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %35 = add i64 %15, 8 %36 = getelementptr inbounds double, ptr %6, i64 %35 %wide.load.2 = load <4 x double>, ptr %36, align 8 %37 = add i64 %16, 8 %38 = getelementptr inbounds double, ptr %8, i64 %37 %wide.load137.2 = load <4 x double>, ptr %38, align 8 ; └ ; ┌ @ float.jl:491 within `+` %39 = fadd <4 x double> %wide.load.2, %wide.load137.2 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %40 = add i64 %17, 8 %41 = getelementptr inbounds double, ptr %9, i64 %40 store <4 x double> %39, ptr %41, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %42 = add i64 %15, 12 %43 = getelementptr inbounds double, ptr %6, i64 %42 %wide.load.3 = load <4 x double>, ptr %43, align 8 %44 = add i64 %16, 12 %45 = getelementptr inbounds double, ptr %8, i64 %44 %wide.load137.3 = load <4 x double>, ptr %45, align 8 ; └ ; ┌ @ float.jl:491 within `+` %46 = fadd <4 x double> %wide.load.3, %wide.load137.3 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %47 = add i64 %17, 12 %48 = getelementptr inbounds double, ptr %9, i64 %47 store <4 x double> %46, ptr %48, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %49 = add i64 %15, 16 %50 = getelementptr inbounds double, ptr %6, i64 %49 %wide.load.4 = load <4 x double>, ptr %50, align 8 %51 = add i64 %16, 16 %52 = getelementptr inbounds double, ptr %8, i64 %51 %wide.load137.4 = load <4 x double>, ptr %52, align 8 ; └ ; ┌ @ float.jl:491 within `+` %53 = fadd <4 x double> %wide.load.4, %wide.load137.4 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %54 = add i64 %17, 16 %55 = getelementptr inbounds double, ptr %9, i64 %54 store <4 x double> %53, ptr %55, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %56 = add i64 %15, 20 %57 = getelementptr inbounds double, ptr %6, i64 %56 %wide.load.5 = load <4 x double>, ptr %57, align 8 %58 = add i64 %16, 20 %59 = getelementptr inbounds double, ptr %8, i64 %58 %wide.load137.5 = load <4 x double>, ptr %59, align 8 ; └ ; ┌ @ float.jl:491 within `+` %60 = fadd <4 x double> %wide.load.5, %wide.load137.5 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %61 = add i64 %17, 20 %62 = getelementptr inbounds double, ptr %9, i64 %61 store <4 x double> %60, ptr %62, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %63 = add i64 %15, 24 %64 = getelementptr inbounds double, ptr %6, i64 %63 %wide.load.6 = load <4 x double>, ptr %64, align 8 %65 = add i64 %16, 24 %66 = getelementptr inbounds double, ptr %8, i64 %65 %wide.load137.6 = load <4 x double>, ptr %66, align 8 ; └ ; ┌ @ float.jl:491 within `+` %67 = fadd <4 x double> %wide.load.6, %wide.load137.6 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %68 = add i64 %17, 24 %69 = getelementptr inbounds double, ptr %9, i64 %68 store <4 x double> %67, ptr %69, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %70 = add i64 %15, 28 %71 = getelementptr inbounds double, ptr %6, i64 %70 %wide.load.7 = load <4 x double>, ptr %71, align 8 %72 = add i64 %16, 28 %73 = getelementptr inbounds double, ptr %8, i64 %72 %wide.load137.7 = load <4 x double>, ptr %73, align 8 ; └ ; ┌ @ float.jl:491 within `+` %74 = fadd <4 x double> %wide.load.7, %wide.load137.7 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %75 = add i64 %17, 28 %76 = getelementptr inbounds double, ptr %9, i64 %75 store <4 x double> %74, ptr %76, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %77 = add i64 %15, 32 %78 = getelementptr inbounds double, ptr %6, i64 %77 %wide.load.8 = load <4 x double>, ptr %78, align 8 %79 = add i64 %16, 32 %80 = getelementptr inbounds double, ptr %8, i64 %79 %wide.load137.8 = load <4 x double>, ptr %80, align 8 ; └ ; ┌ @ float.jl:491 within `+` %81 = fadd <4 x double> %wide.load.8, %wide.load137.8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %82 = add i64 %17, 32 %83 = getelementptr inbounds double, ptr %9, i64 %82 store <4 x double> %81, ptr %83, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %84 = add i64 %15, 36 %85 = getelementptr inbounds double, ptr %6, i64 %84 %wide.load.9 = load <4 x double>, ptr %85, align 8 %86 = add i64 %16, 36 %87 = getelementptr inbounds double, ptr %8, i64 %86 %wide.load137.9 = load <4 x double>, ptr %87, align 8 ; └ ; ┌ @ float.jl:491 within `+` %88 = fadd <4 x double> %wide.load.9, %wide.load137.9 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %89 = add i64 %17, 36 %90 = getelementptr inbounds double, ptr %9, i64 %89 store <4 x double> %88, ptr %90, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %91 = add i64 %15, 40 %92 = getelementptr inbounds double, ptr %6, i64 %91 %wide.load.10 = load <4 x double>, ptr %92, align 8 %93 = add i64 %16, 40 %94 = getelementptr inbounds double, ptr %8, i64 %93 %wide.load137.10 = load <4 x double>, ptr %94, align 8 ; └ ; ┌ @ float.jl:491 within `+` %95 = fadd <4 x double> %wide.load.10, %wide.load137.10 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %96 = add i64 %17, 40 %97 = getelementptr inbounds double, ptr %9, i64 %96 store <4 x double> %95, ptr %97, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %98 = add i64 %15, 44 %99 = getelementptr inbounds double, ptr %6, i64 %98 %wide.load.11 = load <4 x double>, ptr %99, align 8 %100 = add i64 %16, 44 %101 = getelementptr inbounds double, ptr %8, i64 %100 %wide.load137.11 = load <4 x double>, ptr %101, align 8 ; └ ; ┌ @ float.jl:491 within `+` %102 = fadd <4 x double> %wide.load.11, %wide.load137.11 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %103 = add i64 %17, 44 %104 = getelementptr inbounds double, ptr %9, i64 %103 store <4 x double> %102, ptr %104, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %105 = add i64 %15, 48 %106 = getelementptr inbounds double, ptr %6, i64 %105 %wide.load.12 = load <4 x double>, ptr %106, align 8 %107 = add i64 %16, 48 %108 = getelementptr inbounds double, ptr %8, i64 %107 %wide.load137.12 = load <4 x double>, ptr %108, align 8 ; └ ; ┌ @ float.jl:491 within `+` %109 = fadd <4 x double> %wide.load.12, %wide.load137.12 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %110 = add i64 %17, 48 %111 = getelementptr inbounds double, ptr %9, i64 %110 store <4 x double> %109, ptr %111, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %112 = add i64 %15, 52 %113 = getelementptr inbounds double, ptr %6, i64 %112 %wide.load.13 = load <4 x double>, ptr %113, align 8 %114 = add i64 %16, 52 %115 = getelementptr inbounds double, ptr %8, i64 %114 %wide.load137.13 = load <4 x double>, ptr %115, align 8 ; └ ; ┌ @ float.jl:491 within `+` %116 = fadd <4 x double> %wide.load.13, %wide.load137.13 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %117 = add i64 %17, 52 %118 = getelementptr inbounds double, ptr %9, i64 %117 store <4 x double> %116, ptr %118, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %119 = add i64 %15, 56 %120 = getelementptr inbounds double, ptr %6, i64 %119 %wide.load.14 = load <4 x double>, ptr %120, align 8 %121 = add i64 %16, 56 %122 = getelementptr inbounds double, ptr %8, i64 %121 %wide.load137.14 = load <4 x double>, ptr %122, align 8 ; └ ; ┌ @ float.jl:491 within `+` %123 = fadd <4 x double> %wide.load.14, %wide.load137.14 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %124 = add i64 %17, 56 %125 = getelementptr inbounds double, ptr %9, i64 %124 store <4 x double> %123, ptr %125, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %126 = add i64 %15, 60 %127 = getelementptr inbounds double, ptr %6, i64 %126 %wide.load.15 = load <4 x double>, ptr %127, align 8 %128 = add i64 %16, 60 %129 = getelementptr inbounds double, ptr %8, i64 %128 %wide.load137.15 = load <4 x double>, ptr %129, align 8 ; └ ; ┌ @ float.jl:491 within `+` %130 = fadd <4 x double> %wide.load.15, %wide.load137.15 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %131 = add i64 %17, 60 %132 = getelementptr inbounds double, ptr %9, i64 %131 store <4 x double> %130, ptr %132, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %133 = add i64 %15, 64 %134 = getelementptr inbounds double, ptr %6, i64 %133 %wide.load.16 = load <4 x double>, ptr %134, align 8 %135 = add i64 %16, 64 %136 = getelementptr inbounds double, ptr %8, i64 %135 %wide.load137.16 = load <4 x double>, ptr %136, align 8 ; └ ; ┌ @ float.jl:491 within `+` %137 = fadd <4 x double> %wide.load.16, %wide.load137.16 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %138 = add i64 %17, 64 %139 = getelementptr inbounds double, ptr %9, i64 %138 store <4 x double> %137, ptr %139, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %140 = add i64 %15, 68 %141 = getelementptr inbounds double, ptr %6, i64 %140 %wide.load.17 = load <4 x double>, ptr %141, align 8 %142 = add i64 %16, 68 %143 = getelementptr inbounds double, ptr %8, i64 %142 %wide.load137.17 = load <4 x double>, ptr %143, align 8 ; └ ; ┌ @ float.jl:491 within `+` %144 = fadd <4 x double> %wide.load.17, %wide.load137.17 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %145 = add i64 %17, 68 %146 = getelementptr inbounds double, ptr %9, i64 %145 store <4 x double> %144, ptr %146, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %147 = add i64 %15, 72 %148 = getelementptr inbounds double, ptr %6, i64 %147 %wide.load.18 = load <4 x double>, ptr %148, align 8 %149 = add i64 %16, 72 %150 = getelementptr inbounds double, ptr %8, i64 %149 %wide.load137.18 = load <4 x double>, ptr %150, align 8 ; └ ; ┌ @ float.jl:491 within `+` %151 = fadd <4 x double> %wide.load.18, %wide.load137.18 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %152 = add i64 %17, 72 %153 = getelementptr inbounds double, ptr %9, i64 %152 store <4 x double> %151, ptr %153, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %154 = add i64 %15, 76 %155 = getelementptr inbounds double, ptr %6, i64 %154 %wide.load.19 = load <4 x double>, ptr %155, align 8 %156 = add i64 %16, 76 %157 = getelementptr inbounds double, ptr %8, i64 %156 %wide.load137.19 = load <4 x double>, ptr %157, align 8 ; └ ; ┌ @ float.jl:491 within `+` %158 = fadd <4 x double> %wide.load.19, %wide.load137.19 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %159 = add i64 %17, 76 %160 = getelementptr inbounds double, ptr %9, i64 %159 store <4 x double> %158, ptr %160, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %161 = add i64 %15, 80 %162 = getelementptr inbounds double, ptr %6, i64 %161 %wide.load.20 = load <4 x double>, ptr %162, align 8 %163 = add i64 %16, 80 %164 = getelementptr inbounds double, ptr %8, i64 %163 %wide.load137.20 = load <4 x double>, ptr %164, align 8 ; └ ; ┌ @ float.jl:491 within `+` %165 = fadd <4 x double> %wide.load.20, %wide.load137.20 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %166 = add i64 %17, 80 %167 = getelementptr inbounds double, ptr %9, i64 %166 store <4 x double> %165, ptr %167, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %168 = add i64 %15, 84 %169 = getelementptr inbounds double, ptr %6, i64 %168 %wide.load.21 = load <4 x double>, ptr %169, align 8 %170 = add i64 %16, 84 %171 = getelementptr inbounds double, ptr %8, i64 %170 %wide.load137.21 = load <4 x double>, ptr %171, align 8 ; └ ; ┌ @ float.jl:491 within `+` %172 = fadd <4 x double> %wide.load.21, %wide.load137.21 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %173 = add i64 %17, 84 %174 = getelementptr inbounds double, ptr %9, i64 %173 store <4 x double> %172, ptr %174, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %175 = add i64 %15, 88 %176 = getelementptr inbounds double, ptr %6, i64 %175 %wide.load.22 = load <4 x double>, ptr %176, align 8 %177 = add i64 %16, 88 %178 = getelementptr inbounds double, ptr %8, i64 %177 %wide.load137.22 = load <4 x double>, ptr %178, align 8 ; └ ; ┌ @ float.jl:491 within `+` %179 = fadd <4 x double> %wide.load.22, %wide.load137.22 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %180 = add i64 %17, 88 %181 = getelementptr inbounds double, ptr %9, i64 %180 store <4 x double> %179, ptr %181, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %182 = add i64 %15, 92 %183 = getelementptr inbounds double, ptr %6, i64 %182 %wide.load.23 = load <4 x double>, ptr %183, align 8 %184 = add i64 %16, 92 %185 = getelementptr inbounds double, ptr %8, i64 %184 %wide.load137.23 = load <4 x double>, ptr %185, align 8 ; └ ; ┌ @ float.jl:491 within `+` %186 = fadd <4 x double> %wide.load.23, %wide.load137.23 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %187 = add i64 %17, 92 %188 = getelementptr inbounds double, ptr %9, i64 %187 store <4 x double> %186, ptr %188, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %189 = add i64 %15, 96 %190 = getelementptr inbounds double, ptr %6, i64 %189 %wide.load.24 = load <4 x double>, ptr %190, align 8 %191 = add i64 %16, 96 %192 = getelementptr inbounds double, ptr %8, i64 %191 %wide.load137.24 = load <4 x double>, ptr %192, align 8 ; └ ; ┌ @ float.jl:491 within `+` %193 = fadd <4 x double> %wide.load.24, %wide.load137.24 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %194 = add i64 %17, 96 %195 = getelementptr inbounds double, ptr %9, i64 %194 store <4 x double> %193, ptr %195, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` ; │┌ @ promotion.jl:639 within `==` br label %L178 L4: ; preds = %L4, %L2 %value_phi2 = phi i64 [ %695, %L4 ], [ 1, %L2 ] ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` ; │┌ @ abstractarray.jl:1347 within `_to_linear_index` ; ││┌ @ abstractarray.jl:3048 within `_sub2ind` @ abstractarray.jl:3064 ; │││┌ @ abstractarray.jl:3080 within `_sub2ind_recurse` @ abstractarray.jl :3080 ; ││││┌ @ int.jl:87 within `+` %196 = add nsw i64 %value_phi2, -1 ; │└└└└ ; │ @ array.jl:930 within `getindex` @ essentials.jl:917 %197 = add i64 %196, %15 %198 = getelementptr inbounds double, ptr %6, i64 %197 %199 = load double, ptr %198, align 8 %200 = add i64 %196, %16 %201 = getelementptr inbounds double, ptr %8, i64 %200 %202 = load double, ptr %201, align 8 ; └ ; ┌ @ float.jl:491 within `+` %203 = fadd double %199, %202 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %204 = add i64 %196, %17 %205 = getelementptr inbounds double, ptr %9, i64 %204 store double %203, ptr %205, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %206 = add nuw nsw i64 %value_phi2, 1 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %207 = add i64 %value_phi2, %15 %208 = getelementptr inbounds double, ptr %6, i64 %207 %209 = load double, ptr %208, align 8 %210 = add i64 %value_phi2, %16 %211 = getelementptr inbounds double, ptr %8, i64 %210 %212 = load double, ptr %211, align 8 ; └ ; ┌ @ float.jl:491 within `+` %213 = fadd double %209, %212 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %214 = add i64 %value_phi2, %17 %215 = getelementptr inbounds double, ptr %9, i64 %214 store double %213, ptr %215, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %216 = add nuw nsw i64 %value_phi2, 2 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %217 = add i64 %206, %15 %218 = getelementptr inbounds double, ptr %6, i64 %217 %219 = load double, ptr %218, align 8 %220 = add i64 %206, %16 %221 = getelementptr inbounds double, ptr %8, i64 %220 %222 = load double, ptr %221, align 8 ; └ ; ┌ @ float.jl:491 within `+` %223 = fadd double %219, %222 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %224 = add i64 %206, %17 %225 = getelementptr inbounds double, ptr %9, i64 %224 store double %223, ptr %225, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %226 = add nuw nsw i64 %value_phi2, 3 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %227 = add i64 %216, %15 %228 = getelementptr inbounds double, ptr %6, i64 %227 %229 = load double, ptr %228, align 8 %230 = add i64 %216, %16 %231 = getelementptr inbounds double, ptr %8, i64 %230 %232 = load double, ptr %231, align 8 ; └ ; ┌ @ float.jl:491 within `+` %233 = fadd double %229, %232 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %234 = add i64 %216, %17 %235 = getelementptr inbounds double, ptr %9, i64 %234 store double %233, ptr %235, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %236 = add nuw nsw i64 %value_phi2, 4 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %237 = add i64 %226, %15 %238 = getelementptr inbounds double, ptr %6, i64 %237 %239 = load double, ptr %238, align 8 %240 = add i64 %226, %16 %241 = getelementptr inbounds double, ptr %8, i64 %240 %242 = load double, ptr %241, align 8 ; └ ; ┌ @ float.jl:491 within `+` %243 = fadd double %239, %242 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %244 = add i64 %226, %17 %245 = getelementptr inbounds double, ptr %9, i64 %244 store double %243, ptr %245, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %246 = add nuw nsw i64 %value_phi2, 5 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %247 = add i64 %236, %15 %248 = getelementptr inbounds double, ptr %6, i64 %247 %249 = load double, ptr %248, align 8 %250 = add i64 %236, %16 %251 = getelementptr inbounds double, ptr %8, i64 %250 %252 = load double, ptr %251, align 8 ; └ ; ┌ @ float.jl:491 within `+` %253 = fadd double %249, %252 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %254 = add i64 %236, %17 %255 = getelementptr inbounds double, ptr %9, i64 %254 store double %253, ptr %255, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %256 = add nuw nsw i64 %value_phi2, 6 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %257 = add i64 %246, %15 %258 = getelementptr inbounds double, ptr %6, i64 %257 %259 = load double, ptr %258, align 8 %260 = add i64 %246, %16 %261 = getelementptr inbounds double, ptr %8, i64 %260 %262 = load double, ptr %261, align 8 ; └ ; ┌ @ float.jl:491 within `+` %263 = fadd double %259, %262 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %264 = add i64 %246, %17 %265 = getelementptr inbounds double, ptr %9, i64 %264 store double %263, ptr %265, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %266 = add nuw nsw i64 %value_phi2, 7 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %267 = add i64 %256, %15 %268 = getelementptr inbounds double, ptr %6, i64 %267 %269 = load double, ptr %268, align 8 %270 = add i64 %256, %16 %271 = getelementptr inbounds double, ptr %8, i64 %270 %272 = load double, ptr %271, align 8 ; └ ; ┌ @ float.jl:491 within `+` %273 = fadd double %269, %272 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %274 = add i64 %256, %17 %275 = getelementptr inbounds double, ptr %9, i64 %274 store double %273, ptr %275, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %276 = add nuw nsw i64 %value_phi2, 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %277 = add i64 %266, %15 %278 = getelementptr inbounds double, ptr %6, i64 %277 %279 = load double, ptr %278, align 8 %280 = add i64 %266, %16 %281 = getelementptr inbounds double, ptr %8, i64 %280 %282 = load double, ptr %281, align 8 ; └ ; ┌ @ float.jl:491 within `+` %283 = fadd double %279, %282 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %284 = add i64 %266, %17 %285 = getelementptr inbounds double, ptr %9, i64 %284 store double %283, ptr %285, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %286 = add nuw nsw i64 %value_phi2, 9 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %287 = add i64 %276, %15 %288 = getelementptr inbounds double, ptr %6, i64 %287 %289 = load double, ptr %288, align 8 %290 = add i64 %276, %16 %291 = getelementptr inbounds double, ptr %8, i64 %290 %292 = load double, ptr %291, align 8 ; └ ; ┌ @ float.jl:491 within `+` %293 = fadd double %289, %292 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %294 = add i64 %276, %17 %295 = getelementptr inbounds double, ptr %9, i64 %294 store double %293, ptr %295, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %296 = add nuw nsw i64 %value_phi2, 10 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %297 = add i64 %286, %15 %298 = getelementptr inbounds double, ptr %6, i64 %297 %299 = load double, ptr %298, align 8 %300 = add i64 %286, %16 %301 = getelementptr inbounds double, ptr %8, i64 %300 %302 = load double, ptr %301, align 8 ; └ ; ┌ @ float.jl:491 within `+` %303 = fadd double %299, %302 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %304 = add i64 %286, %17 %305 = getelementptr inbounds double, ptr %9, i64 %304 store double %303, ptr %305, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %306 = add nuw nsw i64 %value_phi2, 11 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %307 = add i64 %296, %15 %308 = getelementptr inbounds double, ptr %6, i64 %307 %309 = load double, ptr %308, align 8 %310 = add i64 %296, %16 %311 = getelementptr inbounds double, ptr %8, i64 %310 %312 = load double, ptr %311, align 8 ; └ ; ┌ @ float.jl:491 within `+` %313 = fadd double %309, %312 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %314 = add i64 %296, %17 %315 = getelementptr inbounds double, ptr %9, i64 %314 store double %313, ptr %315, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %316 = add nuw nsw i64 %value_phi2, 12 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %317 = add i64 %306, %15 %318 = getelementptr inbounds double, ptr %6, i64 %317 %319 = load double, ptr %318, align 8 %320 = add i64 %306, %16 %321 = getelementptr inbounds double, ptr %8, i64 %320 %322 = load double, ptr %321, align 8 ; └ ; ┌ @ float.jl:491 within `+` %323 = fadd double %319, %322 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %324 = add i64 %306, %17 %325 = getelementptr inbounds double, ptr %9, i64 %324 store double %323, ptr %325, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %326 = add nuw nsw i64 %value_phi2, 13 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %327 = add i64 %316, %15 %328 = getelementptr inbounds double, ptr %6, i64 %327 %329 = load double, ptr %328, align 8 %330 = add i64 %316, %16 %331 = getelementptr inbounds double, ptr %8, i64 %330 %332 = load double, ptr %331, align 8 ; └ ; ┌ @ float.jl:491 within `+` %333 = fadd double %329, %332 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %334 = add i64 %316, %17 %335 = getelementptr inbounds double, ptr %9, i64 %334 store double %333, ptr %335, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %336 = add nuw nsw i64 %value_phi2, 14 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %337 = add i64 %326, %15 %338 = getelementptr inbounds double, ptr %6, i64 %337 %339 = load double, ptr %338, align 8 %340 = add i64 %326, %16 %341 = getelementptr inbounds double, ptr %8, i64 %340 %342 = load double, ptr %341, align 8 ; └ ; ┌ @ float.jl:491 within `+` %343 = fadd double %339, %342 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %344 = add i64 %326, %17 %345 = getelementptr inbounds double, ptr %9, i64 %344 store double %343, ptr %345, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %346 = add nuw nsw i64 %value_phi2, 15 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %347 = add i64 %336, %15 %348 = getelementptr inbounds double, ptr %6, i64 %347 %349 = load double, ptr %348, align 8 %350 = add i64 %336, %16 %351 = getelementptr inbounds double, ptr %8, i64 %350 %352 = load double, ptr %351, align 8 ; └ ; ┌ @ float.jl:491 within `+` %353 = fadd double %349, %352 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %354 = add i64 %336, %17 %355 = getelementptr inbounds double, ptr %9, i64 %354 store double %353, ptr %355, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %356 = add nuw nsw i64 %value_phi2, 16 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %357 = add i64 %346, %15 %358 = getelementptr inbounds double, ptr %6, i64 %357 %359 = load double, ptr %358, align 8 %360 = add i64 %346, %16 %361 = getelementptr inbounds double, ptr %8, i64 %360 %362 = load double, ptr %361, align 8 ; └ ; ┌ @ float.jl:491 within `+` %363 = fadd double %359, %362 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %364 = add i64 %346, %17 %365 = getelementptr inbounds double, ptr %9, i64 %364 store double %363, ptr %365, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %366 = add nuw nsw i64 %value_phi2, 17 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %367 = add i64 %356, %15 %368 = getelementptr inbounds double, ptr %6, i64 %367 %369 = load double, ptr %368, align 8 %370 = add i64 %356, %16 %371 = getelementptr inbounds double, ptr %8, i64 %370 %372 = load double, ptr %371, align 8 ; └ ; ┌ @ float.jl:491 within `+` %373 = fadd double %369, %372 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %374 = add i64 %356, %17 %375 = getelementptr inbounds double, ptr %9, i64 %374 store double %373, ptr %375, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %376 = add nuw nsw i64 %value_phi2, 18 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %377 = add i64 %366, %15 %378 = getelementptr inbounds double, ptr %6, i64 %377 %379 = load double, ptr %378, align 8 %380 = add i64 %366, %16 %381 = getelementptr inbounds double, ptr %8, i64 %380 %382 = load double, ptr %381, align 8 ; └ ; ┌ @ float.jl:491 within `+` %383 = fadd double %379, %382 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %384 = add i64 %366, %17 %385 = getelementptr inbounds double, ptr %9, i64 %384 store double %383, ptr %385, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %386 = add nuw nsw i64 %value_phi2, 19 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %387 = add i64 %376, %15 %388 = getelementptr inbounds double, ptr %6, i64 %387 %389 = load double, ptr %388, align 8 %390 = add i64 %376, %16 %391 = getelementptr inbounds double, ptr %8, i64 %390 %392 = load double, ptr %391, align 8 ; └ ; ┌ @ float.jl:491 within `+` %393 = fadd double %389, %392 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %394 = add i64 %376, %17 %395 = getelementptr inbounds double, ptr %9, i64 %394 store double %393, ptr %395, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %396 = add nuw nsw i64 %value_phi2, 20 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %397 = add i64 %386, %15 %398 = getelementptr inbounds double, ptr %6, i64 %397 %399 = load double, ptr %398, align 8 %400 = add i64 %386, %16 %401 = getelementptr inbounds double, ptr %8, i64 %400 %402 = load double, ptr %401, align 8 ; └ ; ┌ @ float.jl:491 within `+` %403 = fadd double %399, %402 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %404 = add i64 %386, %17 %405 = getelementptr inbounds double, ptr %9, i64 %404 store double %403, ptr %405, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %406 = add nuw nsw i64 %value_phi2, 21 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %407 = add i64 %396, %15 %408 = getelementptr inbounds double, ptr %6, i64 %407 %409 = load double, ptr %408, align 8 %410 = add i64 %396, %16 %411 = getelementptr inbounds double, ptr %8, i64 %410 %412 = load double, ptr %411, align 8 ; └ ; ┌ @ float.jl:491 within `+` %413 = fadd double %409, %412 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %414 = add i64 %396, %17 %415 = getelementptr inbounds double, ptr %9, i64 %414 store double %413, ptr %415, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %416 = add nuw nsw i64 %value_phi2, 22 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %417 = add i64 %406, %15 %418 = getelementptr inbounds double, ptr %6, i64 %417 %419 = load double, ptr %418, align 8 %420 = add i64 %406, %16 %421 = getelementptr inbounds double, ptr %8, i64 %420 %422 = load double, ptr %421, align 8 ; └ ; ┌ @ float.jl:491 within `+` %423 = fadd double %419, %422 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %424 = add i64 %406, %17 %425 = getelementptr inbounds double, ptr %9, i64 %424 store double %423, ptr %425, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %426 = add nuw nsw i64 %value_phi2, 23 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %427 = add i64 %416, %15 %428 = getelementptr inbounds double, ptr %6, i64 %427 %429 = load double, ptr %428, align 8 %430 = add i64 %416, %16 %431 = getelementptr inbounds double, ptr %8, i64 %430 %432 = load double, ptr %431, align 8 ; └ ; ┌ @ float.jl:491 within `+` %433 = fadd double %429, %432 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %434 = add i64 %416, %17 %435 = getelementptr inbounds double, ptr %9, i64 %434 store double %433, ptr %435, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %436 = add nuw nsw i64 %value_phi2, 24 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %437 = add i64 %426, %15 %438 = getelementptr inbounds double, ptr %6, i64 %437 %439 = load double, ptr %438, align 8 %440 = add i64 %426, %16 %441 = getelementptr inbounds double, ptr %8, i64 %440 %442 = load double, ptr %441, align 8 ; └ ; ┌ @ float.jl:491 within `+` %443 = fadd double %439, %442 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %444 = add i64 %426, %17 %445 = getelementptr inbounds double, ptr %9, i64 %444 store double %443, ptr %445, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %446 = add nuw nsw i64 %value_phi2, 25 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %447 = add i64 %436, %15 %448 = getelementptr inbounds double, ptr %6, i64 %447 %449 = load double, ptr %448, align 8 %450 = add i64 %436, %16 %451 = getelementptr inbounds double, ptr %8, i64 %450 %452 = load double, ptr %451, align 8 ; └ ; ┌ @ float.jl:491 within `+` %453 = fadd double %449, %452 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %454 = add i64 %436, %17 %455 = getelementptr inbounds double, ptr %9, i64 %454 store double %453, ptr %455, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %456 = add nuw nsw i64 %value_phi2, 26 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %457 = add i64 %446, %15 %458 = getelementptr inbounds double, ptr %6, i64 %457 %459 = load double, ptr %458, align 8 %460 = add i64 %446, %16 %461 = getelementptr inbounds double, ptr %8, i64 %460 %462 = load double, ptr %461, align 8 ; └ ; ┌ @ float.jl:491 within `+` %463 = fadd double %459, %462 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %464 = add i64 %446, %17 %465 = getelementptr inbounds double, ptr %9, i64 %464 store double %463, ptr %465, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %466 = add nuw nsw i64 %value_phi2, 27 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %467 = add i64 %456, %15 %468 = getelementptr inbounds double, ptr %6, i64 %467 %469 = load double, ptr %468, align 8 %470 = add i64 %456, %16 %471 = getelementptr inbounds double, ptr %8, i64 %470 %472 = load double, ptr %471, align 8 ; └ ; ┌ @ float.jl:491 within `+` %473 = fadd double %469, %472 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %474 = add i64 %456, %17 %475 = getelementptr inbounds double, ptr %9, i64 %474 store double %473, ptr %475, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %476 = add nuw nsw i64 %value_phi2, 28 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %477 = add i64 %466, %15 %478 = getelementptr inbounds double, ptr %6, i64 %477 %479 = load double, ptr %478, align 8 %480 = add i64 %466, %16 %481 = getelementptr inbounds double, ptr %8, i64 %480 %482 = load double, ptr %481, align 8 ; └ ; ┌ @ float.jl:491 within `+` %483 = fadd double %479, %482 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %484 = add i64 %466, %17 %485 = getelementptr inbounds double, ptr %9, i64 %484 store double %483, ptr %485, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %486 = add nuw nsw i64 %value_phi2, 29 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %487 = add i64 %476, %15 %488 = getelementptr inbounds double, ptr %6, i64 %487 %489 = load double, ptr %488, align 8 %490 = add i64 %476, %16 %491 = getelementptr inbounds double, ptr %8, i64 %490 %492 = load double, ptr %491, align 8 ; └ ; ┌ @ float.jl:491 within `+` %493 = fadd double %489, %492 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %494 = add i64 %476, %17 %495 = getelementptr inbounds double, ptr %9, i64 %494 store double %493, ptr %495, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %496 = add nuw nsw i64 %value_phi2, 30 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %497 = add i64 %486, %15 %498 = getelementptr inbounds double, ptr %6, i64 %497 %499 = load double, ptr %498, align 8 %500 = add i64 %486, %16 %501 = getelementptr inbounds double, ptr %8, i64 %500 %502 = load double, ptr %501, align 8 ; └ ; ┌ @ float.jl:491 within `+` %503 = fadd double %499, %502 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %504 = add i64 %486, %17 %505 = getelementptr inbounds double, ptr %9, i64 %504 store double %503, ptr %505, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %506 = add nuw nsw i64 %value_phi2, 31 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %507 = add i64 %496, %15 %508 = getelementptr inbounds double, ptr %6, i64 %507 %509 = load double, ptr %508, align 8 %510 = add i64 %496, %16 %511 = getelementptr inbounds double, ptr %8, i64 %510 %512 = load double, ptr %511, align 8 ; └ ; ┌ @ float.jl:491 within `+` %513 = fadd double %509, %512 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %514 = add i64 %496, %17 %515 = getelementptr inbounds double, ptr %9, i64 %514 store double %513, ptr %515, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %516 = add nuw nsw i64 %value_phi2, 32 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %517 = add i64 %506, %15 %518 = getelementptr inbounds double, ptr %6, i64 %517 %519 = load double, ptr %518, align 8 %520 = add i64 %506, %16 %521 = getelementptr inbounds double, ptr %8, i64 %520 %522 = load double, ptr %521, align 8 ; └ ; ┌ @ float.jl:491 within `+` %523 = fadd double %519, %522 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %524 = add i64 %506, %17 %525 = getelementptr inbounds double, ptr %9, i64 %524 store double %523, ptr %525, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %526 = add nuw nsw i64 %value_phi2, 33 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %527 = add i64 %516, %15 %528 = getelementptr inbounds double, ptr %6, i64 %527 %529 = load double, ptr %528, align 8 %530 = add i64 %516, %16 %531 = getelementptr inbounds double, ptr %8, i64 %530 %532 = load double, ptr %531, align 8 ; └ ; ┌ @ float.jl:491 within `+` %533 = fadd double %529, %532 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %534 = add i64 %516, %17 %535 = getelementptr inbounds double, ptr %9, i64 %534 store double %533, ptr %535, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %536 = add nuw nsw i64 %value_phi2, 34 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %537 = add i64 %526, %15 %538 = getelementptr inbounds double, ptr %6, i64 %537 %539 = load double, ptr %538, align 8 %540 = add i64 %526, %16 %541 = getelementptr inbounds double, ptr %8, i64 %540 %542 = load double, ptr %541, align 8 ; └ ; ┌ @ float.jl:491 within `+` %543 = fadd double %539, %542 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %544 = add i64 %526, %17 %545 = getelementptr inbounds double, ptr %9, i64 %544 store double %543, ptr %545, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %546 = add nuw nsw i64 %value_phi2, 35 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %547 = add i64 %536, %15 %548 = getelementptr inbounds double, ptr %6, i64 %547 %549 = load double, ptr %548, align 8 %550 = add i64 %536, %16 %551 = getelementptr inbounds double, ptr %8, i64 %550 %552 = load double, ptr %551, align 8 ; └ ; ┌ @ float.jl:491 within `+` %553 = fadd double %549, %552 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %554 = add i64 %536, %17 %555 = getelementptr inbounds double, ptr %9, i64 %554 store double %553, ptr %555, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %556 = add nuw nsw i64 %value_phi2, 36 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %557 = add i64 %546, %15 %558 = getelementptr inbounds double, ptr %6, i64 %557 %559 = load double, ptr %558, align 8 %560 = add i64 %546, %16 %561 = getelementptr inbounds double, ptr %8, i64 %560 %562 = load double, ptr %561, align 8 ; └ ; ┌ @ float.jl:491 within `+` %563 = fadd double %559, %562 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %564 = add i64 %546, %17 %565 = getelementptr inbounds double, ptr %9, i64 %564 store double %563, ptr %565, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %566 = add nuw nsw i64 %value_phi2, 37 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %567 = add i64 %556, %15 %568 = getelementptr inbounds double, ptr %6, i64 %567 %569 = load double, ptr %568, align 8 %570 = add i64 %556, %16 %571 = getelementptr inbounds double, ptr %8, i64 %570 %572 = load double, ptr %571, align 8 ; └ ; ┌ @ float.jl:491 within `+` %573 = fadd double %569, %572 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %574 = add i64 %556, %17 %575 = getelementptr inbounds double, ptr %9, i64 %574 store double %573, ptr %575, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %576 = add nuw nsw i64 %value_phi2, 38 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %577 = add i64 %566, %15 %578 = getelementptr inbounds double, ptr %6, i64 %577 %579 = load double, ptr %578, align 8 %580 = add i64 %566, %16 %581 = getelementptr inbounds double, ptr %8, i64 %580 %582 = load double, ptr %581, align 8 ; └ ; ┌ @ float.jl:491 within `+` %583 = fadd double %579, %582 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %584 = add i64 %566, %17 %585 = getelementptr inbounds double, ptr %9, i64 %584 store double %583, ptr %585, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %586 = add nuw nsw i64 %value_phi2, 39 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %587 = add i64 %576, %15 %588 = getelementptr inbounds double, ptr %6, i64 %587 %589 = load double, ptr %588, align 8 %590 = add i64 %576, %16 %591 = getelementptr inbounds double, ptr %8, i64 %590 %592 = load double, ptr %591, align 8 ; └ ; ┌ @ float.jl:491 within `+` %593 = fadd double %589, %592 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %594 = add i64 %576, %17 %595 = getelementptr inbounds double, ptr %9, i64 %594 store double %593, ptr %595, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %596 = add nuw nsw i64 %value_phi2, 40 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %597 = add i64 %586, %15 %598 = getelementptr inbounds double, ptr %6, i64 %597 %599 = load double, ptr %598, align 8 %600 = add i64 %586, %16 %601 = getelementptr inbounds double, ptr %8, i64 %600 %602 = load double, ptr %601, align 8 ; └ ; ┌ @ float.jl:491 within `+` %603 = fadd double %599, %602 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %604 = add i64 %586, %17 %605 = getelementptr inbounds double, ptr %9, i64 %604 store double %603, ptr %605, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %606 = add nuw nsw i64 %value_phi2, 41 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %607 = add i64 %596, %15 %608 = getelementptr inbounds double, ptr %6, i64 %607 %609 = load double, ptr %608, align 8 %610 = add i64 %596, %16 %611 = getelementptr inbounds double, ptr %8, i64 %610 %612 = load double, ptr %611, align 8 ; └ ; ┌ @ float.jl:491 within `+` %613 = fadd double %609, %612 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %614 = add i64 %596, %17 %615 = getelementptr inbounds double, ptr %9, i64 %614 store double %613, ptr %615, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %616 = add nuw nsw i64 %value_phi2, 42 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %617 = add i64 %606, %15 %618 = getelementptr inbounds double, ptr %6, i64 %617 %619 = load double, ptr %618, align 8 %620 = add i64 %606, %16 %621 = getelementptr inbounds double, ptr %8, i64 %620 %622 = load double, ptr %621, align 8 ; └ ; ┌ @ float.jl:491 within `+` %623 = fadd double %619, %622 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %624 = add i64 %606, %17 %625 = getelementptr inbounds double, ptr %9, i64 %624 store double %623, ptr %625, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %626 = add nuw nsw i64 %value_phi2, 43 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %627 = add i64 %616, %15 %628 = getelementptr inbounds double, ptr %6, i64 %627 %629 = load double, ptr %628, align 8 %630 = add i64 %616, %16 %631 = getelementptr inbounds double, ptr %8, i64 %630 %632 = load double, ptr %631, align 8 ; └ ; ┌ @ float.jl:491 within `+` %633 = fadd double %629, %632 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %634 = add i64 %616, %17 %635 = getelementptr inbounds double, ptr %9, i64 %634 store double %633, ptr %635, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %636 = add nuw nsw i64 %value_phi2, 44 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %637 = add i64 %626, %15 %638 = getelementptr inbounds double, ptr %6, i64 %637 %639 = load double, ptr %638, align 8 %640 = add i64 %626, %16 %641 = getelementptr inbounds double, ptr %8, i64 %640 %642 = load double, ptr %641, align 8 ; └ ; ┌ @ float.jl:491 within `+` %643 = fadd double %639, %642 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %644 = add i64 %626, %17 %645 = getelementptr inbounds double, ptr %9, i64 %644 store double %643, ptr %645, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %646 = add nuw nsw i64 %value_phi2, 45 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %647 = add i64 %636, %15 %648 = getelementptr inbounds double, ptr %6, i64 %647 %649 = load double, ptr %648, align 8 %650 = add i64 %636, %16 %651 = getelementptr inbounds double, ptr %8, i64 %650 %652 = load double, ptr %651, align 8 ; └ ; ┌ @ float.jl:491 within `+` %653 = fadd double %649, %652 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %654 = add i64 %636, %17 %655 = getelementptr inbounds double, ptr %9, i64 %654 store double %653, ptr %655, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %656 = add nuw nsw i64 %value_phi2, 46 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %657 = add i64 %646, %15 %658 = getelementptr inbounds double, ptr %6, i64 %657 %659 = load double, ptr %658, align 8 %660 = add i64 %646, %16 %661 = getelementptr inbounds double, ptr %8, i64 %660 %662 = load double, ptr %661, align 8 ; └ ; ┌ @ float.jl:491 within `+` %663 = fadd double %659, %662 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %664 = add i64 %646, %17 %665 = getelementptr inbounds double, ptr %9, i64 %664 store double %663, ptr %665, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %666 = add nuw nsw i64 %value_phi2, 47 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %667 = add i64 %656, %15 %668 = getelementptr inbounds double, ptr %6, i64 %667 %669 = load double, ptr %668, align 8 %670 = add i64 %656, %16 %671 = getelementptr inbounds double, ptr %8, i64 %670 %672 = load double, ptr %671, align 8 ; └ ; ┌ @ float.jl:491 within `+` %673 = fadd double %669, %672 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %674 = add i64 %656, %17 %675 = getelementptr inbounds double, ptr %9, i64 %674 store double %673, ptr %675, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` %676 = add nuw nsw i64 %value_phi2, 48 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %677 = add i64 %666, %15 %678 = getelementptr inbounds double, ptr %6, i64 %677 %679 = load double, ptr %678, align 8 %680 = add i64 %666, %16 %681 = getelementptr inbounds double, ptr %8, i64 %680 %682 = load double, ptr %681, align 8 ; └ ; ┌ @ float.jl:491 within `+` %683 = fadd double %679, %682 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %684 = add i64 %666, %17 %685 = getelementptr inbounds double, ptr %9, i64 %684 store double %683, ptr %685, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `inner_noalloc_ib!` ; ┌ @ array.jl:930 within `getindex` @ essentials.jl:917 %686 = add i64 %676, %15 %687 = getelementptr inbounds double, ptr %6, i64 %686 %688 = load double, ptr %687, align 8 %689 = add i64 %676, %16 %690 = getelementptr inbounds double, ptr %8, i64 %689 %691 = load double, ptr %690, align 8 ; └ ; ┌ @ float.jl:491 within `+` %692 = fadd double %688, %691 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 5 within `inner_noalloc_ib!` ; ┌ @ array.jl:994 within `setindex!` %693 = add i64 %676, %17 %694 = getelementptr inbounds double, ptr %9, i64 %693 store double %692, ptr %694, align 8 ; └ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 6 within `inner_noalloc_ib!` ; ┌ @ range.jl:908 within `iterate` ; │┌ @ promotion.jl:639 within `==` %.not.not.49 = icmp eq i64 %value_phi2, 51 ; │└ %695 = add nuw nsw i64 %value_phi2, 50 ; └ br i1 %.not.not.49, label %L178, label %L4 L178: ; preds = %L4, %vector.bo dy.preheader ; ┌ @ range.jl:908 within `iterate` ; │┌ @ promotion.jl:639 within `==` %.not.not128 = icmp eq i64 %value_phi, 100 ; │└ %696 = add nuw nsw i64 %value_phi, 1 ; └ %indvar.next = add i64 %indvar, 1 br i1 %.not.not128, label %L189, label %L2 L189: ; preds = %L178 %jl_nothing = load ptr, ptr @jl_nothing, align 8 ret ptr %jl_nothing }
If you look closely, you will see things like:
%wide.load24 = load <4 x double>, <4 x double> addrspac(13)* %46, align 8
; └
; ┌ @ float.jl:395 within `+'
%47 = fadd <4 x double> %wide.load, %wide.load24
What this is saying is that it's loading and adding 4 Float64
s at a time! This feature of the processor is known as SIMD: single input multiple data. If certain primitive floating point operations, like +
and *
, are done in succession (i.e. no inbounds checks between them!), then the processor can lump them together and do multiples at once. Since clock cycles have stopped improving while transistors have gotten smaller, this "lumping" has been a big source of speedups in computational mathematics even though the actual +
and *
hasn't gotten faster. Thus to get full speed we want to make sure this is utilized whenever possible, which essentially just amounts to doing type inferred loops with no branches or bounds checks in the way.
Modern processors have a single operation that fuses the multiplication and the addition in the operation x*y+z
, known as a fused multiply-add or FMA. Note that FMA has less floating point roundoff error than the two operation form. We can see this intrinsic in the resulting LLVM IR:
@code_llvm fma(2.0,5.0,3.0)
; Function Signature: fma(Float64, Float64, Float64) ; @ floatfuncs.jl:357 within `fma` define double @julia_fma_25826(double %"x::Float64", double %"y::Float64", double %"z::Float64") #0 { common.ret: ; ┌ @ floatfuncs.jl:352 within `fma_llvm` %0 = call double @llvm.fma.f64(double %"x::Float64", double %"y::Float64 ", double %"z::Float64") ; └ ret double %0 }
The Julia function muladd
will automatically choose between FMA and the original form depending on the availability of the routine in the processor. The MuladdMacro.jl package has a macro @muladd
which pulls apart statements to add muladd
expressions. For example, x1*y1 + x2*y2 + x3*y3
can be rewritten as:
muladd(x1,y1,muladd(x2,y2,x3*y3))
Which reduces the linear combination to just 3 arithmetic operations. FMA operations can be SIMD'd.
All of this would go to waste if function call costs of 50 clock cycles were interrupting every single +
. Fortunately these function calls disappear during the compilation process due to what's known as inlining. Essentially, if the function call is determined to be "cheap enough", the actual function call is removed and the code is basically pasted into the function caller. We can force a function call to occur by telling it to not inline:
@noinline fnoinline(x,y) = x + y finline(x,y) = x + y # Can add @inline, but this is automatic here function qinline(x,y) a = 4 b = 2 c = finline(x,a) d = finline(b,c) finline(d,y) end function qnoinline(x,y) a = 4 b = 2 c = fnoinline(x,a) d = fnoinline(b,c) fnoinline(d,y) end
qnoinline (generic function with 1 method)
@code_llvm qinline(1.0,2.0)
; Function Signature: qinline(Float64, Float64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 4 within `qinline` define double @julia_qinline_25833(double %"x::Float64", double %"y::Float6 4") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 7 within `qinline` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :3 within `finline` ; │┌ @ promotion.jl:429 within `+` @ float.jl:491 %0 = fadd double %"x::Float64", 4.000000e+00 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 8 within `qinline` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :3 within `finline` ; │┌ @ promotion.jl:429 within `+` @ float.jl:491 %1 = fadd double %0, 2.000000e+00 ; └└ ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 9 within `qinline` ; ┌ @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd :3 within `finline` ; │┌ @ float.jl:491 within `+` %2 = fadd double %1, %"y::Float64" ret double %2 ; └└ }
@code_llvm qnoinline(1.0,2.0)
; Function Signature: qnoinline(Float64, Float64) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 11 within `qnoinline` define double @julia_qnoinline_25837(double %"x::Float64", double %"y::Floa t64") #0 { top: ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 14 within `qnoinline` %0 = call double @j_fnoinline_25841(double %"x::Float64", i64 signext 4) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 15 within `qnoinline` %1 = call double @j_fnoinline_25842(i64 signext 2, double %0) ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 16 within `qnoinline` %2 = call double @j_fnoinline_25843(double %1, double %"y::Float64") ret double %2 }
We can see now that it keeps the function calls:
%4 = call double @julia_fnoinline_21538(double %3, double %1)
and this is slower in comparison to what we had before (but it still infers).
x = 1.0 y = 2.0 @btime qinline(x,y)
20.379 ns (1 allocation: 16 bytes) 9.0
@btime qnoinline(x,y)
24.383 ns (1 allocation: 16 bytes) 9.0
Note that if we ever want to go the other direction and tell Julia to inline as much as possible, one can use the macro @inline
.
Scalar operations are super cheap, and if they are cache-aligned then more than one will occur in a clock cycle.
Inlining a function will remove the high function call overhead.
Branch prediction is pretty good these days, so keep them out of super tight inner loops but don't worry all too much about them.
Cache misses are quite expensive the further out it goes.
Julia's compiler is smart. This means that if you don't try hard enough, Julia's compiler might get rid of your issues. For example, it can delete branches and directly compute the result if all of the values are known at compile time. So be very careful when benchmarking: your tests may have just compiled away!
Notice the following:
@btime qinline(1.0,2.0)
1.552 ns (0 allocations: 0 bytes) 9.0
Dang, that's much faster! But if you look into it, Julia's compiler is actually "cheating" on this benchmark:
cheat() = qinline(1.0,2.0) @code_llvm cheat()
; Function Signature: cheat() ; @ /home/runner/work/SciMLBook/SciMLBook/_weave/lecture02/optimizing.jmd: 2 within `cheat` define double @julia_cheat_25987() #0 { top: ret double 9.000000e+00 }
It realized that 1.0
and 2.0
are constants, so it did what's known as constant propagation, and then used those constants inside of the function. It realized that the solution is always 9
, so it compiled the function that... spits out 9
! So it's fast because it's not computing anything. So be very careful about propagation of constants and literals. In general this is a very helpful feature, but when benchmarking this can cause some weird behavior. If a micro benchmark is taking less than a nanosecond, check and see if the compiler "fixed" your code!
Optimize your serial code before you parallelize. There's a lot to think about.
Here's a few discussion questions to think about performance engineering in scientific tasks:
What are the advantages of a Vector{Array}
vs a Matrix
? What are the disadvantage? (What's different?)
What is a good way to implement a data frame?
What are some good things that come out of generic functions for free? What are some things you should watch out for with generic functions?